The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization

This review examines the influence of grain size on the thermal stability of nanostructured metal oxides by studying their structural parameters. The main consideration was focused on the behavior of SnO2, the most studied and used metal oxide in the field of gas sensor design. It has been shown that a decrease of the grain size was accompanied by a deterioration of the structural stability of the gas sensing material; a change of grain size in the gas sensing material could occur during annealing and exploitation. The study provides an analysis of the reasons for the changes in gas sensor properties during thermal treatment. The effectiveness of different approaches used for stability improvement of metal-oxide structures were considered. In particular, various approaches such as preliminary high-temperature annealing of as-synthesized powders, optimization of the processes of synthesis and deposition, the use of 1-D structures, and metal-oxide doping with various additives were analyzed.

[1]  Marek Kosmulski,et al.  The significance of the difference in the point of zero charge between rutile and anatase. , 2002, Advances in colloid and interface science.

[2]  Victor V. Sysoev,et al.  Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films , 2009 .

[3]  E. Callone,et al.  Nanopowders of metallic oxides prepared by the hydrolytic route with starch stabilization and biological abetment. , 2006, Journal of Nanoscience and Nanotechnology.

[4]  G. Córdoba,et al.  Influence of manganese ions on the anatase–rutile phase transition of TiO2 prepared by the sol–gel process , 2002 .

[5]  W. Stark,et al.  Simultaneous deposition of Au nanoparticles during flame synthesis of TiO_2 and SiO_2 , 2003 .

[6]  Eduard Llobet,et al.  Comparative study of nanocrystalline SnO2 materials for gas sensor application: Thermal stability and catalytic activity , 2009 .

[7]  Sergei V. Kalinin,et al.  VISIBLE SPECTRA OF FRACTAL PARTICLES IN COLLOIDAL SOLUTIONS , 1996 .

[8]  Sergei V. Kalinin,et al.  The fractal particles of iron (III) hydroxonitrate: From solution to solid state , 1995 .

[9]  Haitao Huang,et al.  The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor , 2005 .

[10]  Menachem Elimelech,et al.  Particle Deposition and Aggregation: Measurement, Modelling and Simulation , 1995 .

[11]  V. Kheraj,et al.  Growth, structural, electrical and optical properties of the thermally evaporated tungsten trioxide (WO3) thin films , 2009 .

[12]  N. Yamazoe,et al.  Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor , 2009 .

[13]  S. Pratsinis,et al.  Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability , 2008 .

[14]  Laxmidhar Besra,et al.  A review on fundamentals and applications of electrophoretic deposition (EPD) , 2007 .

[15]  Angel Diéguez,et al.  The complete Raman spectrum of nanometric SnO 2 particles , 2001 .

[16]  I. Dékány,et al.  Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide , 2006 .

[17]  Yunzhi Wang,et al.  Numerical Calculation of Electrical Conductivity of Porous Electroceramics , 1999 .

[18]  Jordi Arbiol,et al.  High response and stability in CO and humidity measures using a single SnO2 nanowire , 2007 .

[19]  Alan J. Hurd,et al.  Review of sol-gel thin film formation , 1992 .

[20]  N. Bârsan,et al.  Metal oxide-based gas sensor research: How to? , 2007 .

[21]  T. Metzger,et al.  Effect of in-flight annealing and deposition method on gas-sensitive SnOx films made from size-selected nanoparticles , 2005 .

[22]  Q. Jiang,et al.  Size effect on the bandgap of II–VI semiconductor nanocrystals , 2006 .

[23]  A. Mazzone A simple tight-binding model of vacancies in SnO2 crystalline grains , 2004 .

[24]  Thorsten Wagner,et al.  Gas Sensing Properties of Ordered Mesoporous SnO2 , 2006, Sensors (Basel, Switzerland).

[25]  J. Ying,et al.  Synthesis of Hexagonally Packed Mesoporous TiO2 by a Modified Sol–Gel Method , 1995 .

[26]  Joseph K. L. Lai,et al.  Investigation of interface defects in nanocrystalline SnO2 by positron annihilation , 1999 .

[27]  T. Chartier,et al.  Tin oxide nanoparticle formation using a surface modifying agent , 2004 .

[28]  Wei Li,et al.  Improved H2 sensing properties of Co-doped SnO2 nanofibers , 2010 .

[29]  G. Guisbiers,et al.  Theoretical investigation of size and shape effects on the melting temperature of ZnO nanostructures , 2007 .

[30]  J. Kappler,et al.  Nanoparticle engineering for gas sensor optimisation: improved sol–gel fabricated nanocrystalline SnO2 thick film gas sensor for NO2 detection by calcination, catalytic metal introduction and grinding treatments , 1999 .

[31]  Nicolae Barsan,et al.  Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles , 2006 .

[32]  Elson Longo,et al.  Development of metal oxide nanoparticles with high stability against particle growth using a metastable solid solution , 2002 .

[33]  Jacek Rynkowski,et al.  The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen , 2011 .

[34]  Ralf Moos,et al.  Assessment of the novel aerosol deposition method for room temperature preparation of metal oxide gas sensor films , 2009 .

[35]  E. Roduner Size matters: why nanomaterials are different. , 2006, Chemical Society reviews.

[36]  A. Cornet,et al.  Structural stability of indium oxide films deposited by spray pyrolysis during thermal annealing , 2005 .

[37]  C. Trautmann,et al.  Fragmentation of nanowires driven by Rayleigh instability , 2004 .

[38]  Giorgio Sberveglieri,et al.  Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts , 2002 .

[39]  Hengde Li,et al.  Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route. , 2005, Journal of colloid and interface science.

[40]  Ghenadii Korotcenkov,et al.  (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: doping influence on film morphology , 2008 .

[41]  Shinobu Fujihara,et al.  Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[42]  Xijin Xu,et al.  Crystallinity‐Controlled Germanium Nanowire Arrays: Potential Field Emitters , 2008 .

[43]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[44]  Nicolae Barsan,et al.  Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles , 2006 .

[45]  Udo Weimar,et al.  Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors , 2000 .

[46]  Lutz Mädler,et al.  Controlled synthesis of nanostructured particles by flame spray pyrolysis , 2002 .

[47]  S. N. Sahu,et al.  Liquid-drop model for the size-dependent melting of low-dimensional systems , 2002 .

[48]  P. Dobson,et al.  Potential environmental influence of amino acids on the behavior of ZnO nanoparticles. , 2011, Chemosphere.

[49]  X. Zu,et al.  Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol-gel-calcination or sol-gel-hydrothermal route , 2008 .

[50]  Dan Li,et al.  Shape and aggregation control of nanoparticles: not shaken, not stirred. , 2006, Journal of the American Chemical Society.

[51]  J. Hazemann,et al.  Electrical properties under polluting gas (CO) of Pt- and Pd-doped polycrystalline SnO2 thin films: analysis of the metal aggregate size effect , 1999 .

[52]  Q. Jiang,et al.  Comparison of different models for melting point change of metallic nanocrystals , 2001 .

[53]  A. Gedanken,et al.  Sonochemical Synthesis of Mesoporous Tin Oxide , 2002 .

[54]  Gas Detection by Semiconductor Ceramics: Tin Oxide as Improved Sensing Material , 2007 .

[55]  G. Korotcenkov,et al.  Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) , 2011 .

[56]  L. Trusov,et al.  Size effects in micromechanics of nanocrystals , 1993 .

[57]  Young Whan Cho,et al.  Thermal stability of unsupported gold nanoparticle: a molecular dynamics study , 2002 .

[58]  Wolfgang Göpel,et al.  SnO2 sensors: current status and future prospects☆ , 1995 .

[59]  Sangyoon Lee,et al.  Stability Improvement of Gallium Indium Zinc Oxide Thin Film Transistors by Post-Thermal Annealing , 2008 .

[60]  A. Bunde,et al.  Percolation and gas sensitivity in nanocrystalline metal oxide films , 2004 .

[61]  N. Yamazoe New approaches for improving semiconductor gas sensors , 1991 .

[62]  E. Longo,et al.  Investigation of the electrical properties of SnO2 varistor system using impedance spectroscopy , 1998 .

[63]  Koji Moriya,et al.  Mechanism of sensitivity promotion in CO sensor using indium oxide and cobalt oxide , 2000 .

[64]  U. Weimar,et al.  Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity , 2003 .

[65]  Makoto Egashira,et al.  Preparation and gas-sensing properties of thermally stable mesoporous SnO2 , 2002 .

[66]  A. Teleki,et al.  Semiconductor gas sensors: dry synthesis and application. , 2010, Angewandte Chemie.

[67]  A. Kiv,et al.  Structural stability of In2O3 films as sensor materials , 2010 .

[68]  J. P. Espinós,et al.  SnO2 thin films prepared by ion beam induced CVD : preparation and characterization by X-ray absorption spectroscopy , 1999 .

[69]  E. Longo,et al.  Effect of Atmosphere on the Sintering and Grain Growth of Tin Oxide , 1998 .

[70]  Zhong Lin Wang,et al.  Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks , 2006 .

[71]  Thomas Maier,et al.  Atmospheric pressure fabrication of SnO2-nanowires for highly sensitive CO and CH4 detection , 2009 .

[72]  Jianfeng Huang,et al.  Preparation of SnO2 nanocrystallites by hydrothermal liquid–solid–solution process , 2007 .

[73]  P. Prathap,et al.  Growth and characterization of indium oxide films , 2008 .

[74]  A. Cornet,et al.  New method to obtain stable small-sized SnO2 powders for gas sensors , 1999 .

[75]  Udo Weimar,et al.  Influence on the gas sensor performances of the metal chemical states introduced by impregnation of calcinated SnO2 sol–gel nanocrystals , 2000 .

[76]  A. P. Chernyshev Effect of nanoparticle size on the onset temperature of surface melting , 2009 .

[77]  S. Oswald,et al.  Specific properties of fine SnO2 powders connected with surface segregation , 2004, Analytical and bioanalytical chemistry.

[78]  S. Han,et al.  Preparation and characterization of indium-doped tin dioxide nanocrystalline powders , 1998 .

[79]  Harry L. Tuller,et al.  Novel deposition techniques for metal oxide: Prospects for gas sensing , 2010 .

[80]  P. N. Lisboa-Filho,et al.  The influence of cation segregation on the methanol decomposition on nanostructured SnO2 , 2002 .

[81]  N. Yamazoe,et al.  Hydrothermal treatment of tin oxide sol solution for preparation of thin-film sensor with enhanced thermal stability and gas sensitivity , 2000 .

[82]  L. Qi,et al.  Synthesis and Characterization of Mesostructured Tin Oxide with Crystalline Walls , 1998 .

[83]  Ghenadii Korotcenkov,et al.  Grain Size Effects in Sensor Response of Nanostructured SnO2- and In2O3-Based Conductometric Thin Film Gas Sensor , 2009 .

[84]  Chao-Nan Xu,et al.  Grain size effects on gas sensitivity of porous SnO2-based elements , 1991 .

[85]  A. Cornet,et al.  The influence of additives on gas sensing and structural properties of In2O3-based ceramics , 2007 .

[86]  M. Bendahan,et al.  Grain size effect in sputtered tungsten trioxide thin films on the sensitivity to ozone , 2005 .

[87]  G. Fei,et al.  Structural stability of Co nanowire arrays embedded in the PAAM , 2006 .

[88]  I. Tanaka,et al.  Reduced SnO2 surfaces by first-principles calculations , 2004 .

[89]  V. Meynen,et al.  Preparation and characterization of SnO2 nanoparticles of enhanced thermal stability: The effect of phosphoric acid treatment on SnO2·nH2O , 2005 .

[90]  Yaqi Jiang,et al.  Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. , 2009, Angewandte Chemie.

[91]  K. Yu,et al.  MICROSTRUCTURAL CHANGE OF NANO-SNO2 GRAIN ASSEMBLAGES WITH THE ANNEALING TEMPERATURE , 1997 .

[92]  R. G. Pavelko,et al.  Studies of thermal stability of nanocrystalline SnO2, ZrO2, and SiC for semiconductor and thermocatalytic gas sensors , 2009 .

[93]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[94]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[95]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[96]  I. Zhitomirsky,et al.  Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects. , 2002, Advances in colloid and interface science.

[97]  Soon-Don Choi,et al.  Role of CaO as crystallite growth inhibitor in SnO2 , 2004 .

[98]  J. Kwon,et al.  Effect of a sintering process on the electrical properties of SnO2 gas sensors. , 2010, Journal of Nanoscience and Nanotechnology.

[99]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[100]  V. Golovanov,et al.  Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4·5H2O water solution , 2002 .

[101]  W. Jin,et al.  Synthesis and characterization of V2O5-doped SnO2 nanocrystallites for oxygen-sensing properties , 2003 .

[102]  Nicolae Barsan,et al.  Flame spray synthesis of tin dioxide nanoparticles for gas sensing , 2004 .

[103]  Mohammed Baalousha,et al.  Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. , 2009, The Science of the total environment.

[104]  U. Lampe,et al.  Metal Oxide Sensors , 1995, International Conference on Solid-State Sensors, Actuators and Microsystems.

[105]  Meilin Liu,et al.  Effect of particle size and dopant on properties of SnO2-based gas sensors , 2000 .

[106]  F. Senocq,et al.  Synthesis and use of a novel SnO2 nanomaterial for gas sensing , 2000 .

[107]  X. Zu,et al.  Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method , 2008 .

[108]  Yasutaka Ozaki,et al.  Enhanced long-term stability of SnO2-based CO gas sensors modified by sulfuric acid treatment , 2000 .

[109]  Feng Xu,et al.  Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods , 2007 .

[110]  A. Gurlo,et al.  Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. , 2011, Nanoscale.

[111]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[112]  Michael Tiemann,et al.  Porous metal oxides as gas sensors. , 2007, Chemistry.

[113]  Meilin Liu,et al.  A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition , 2005 .

[114]  G. Korotcenkov,et al.  (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure , 2009 .

[115]  Q. Jiang,et al.  Modeling size and surface effects on ZnS phase selection , 2008 .

[116]  A. Cornet,et al.  Gas-sensing characteristics of one-electrode gas sensors based on doped In2O3 ceramics , 2004 .

[117]  Y. Hwang,et al.  Effect of Pt concentration on the physicochemical properties and CO sensing activity of mesostructured SnO2 , 2006 .

[118]  Tao Xu,et al.  Controlling Morphologies and Tuning the Related Properties of Nano/Microstructured ZnO Crystallites , 2009 .

[119]  Chao-Nan Xu,et al.  Stabilization of SnO2 ultrafine particles by additives , 1992 .

[120]  Jillian F Banfield,et al.  Influence of surface potential on aggregation and transport of titania nanoparticles. , 2006, Environmental science & technology.

[121]  Zhonghao Jiang,et al.  Thermodynamic phase stability of three nano-oxides , 2008 .

[122]  N. Sergent,et al.  Preparation and characterisation of high surface area stannic oxides: structural, textural and semiconducting properties , 2002 .

[123]  E. Longo,et al.  The influence of sintering process and atmosphere on the non-ohmic properties of SnO2 based varistor , 1999 .

[124]  M. V. Nazarov,et al.  Cathodoluminescence study of SnO2 powders aimed for gas sensor applications , 2006 .

[125]  M. Bagheri-Mohagheghi,et al.  The effect of the post-annealing temperature on the nano-structure and energy band gap of SnO2 semiconducting oxide nano-particles synthesized by polymerizing–complexing sol–gel method , 2008 .

[126]  P. Sebastián,et al.  Thermal stability and structural deformation of rutile SnO2 nanoparticles , 2003 .

[127]  Q. Jiang,et al.  Entropy for solid-liquid transition in nanocrystals , 1998 .

[128]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of ceramic powders , 1998 .

[129]  T. Serin,et al.  Electrical, structural and optical properties of SnO2 thin films prepared by spray pyrolysis , 2006 .

[130]  P. Baveye,et al.  Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. , 2009, Environmental science & technology.

[131]  S. Beke,et al.  Effects of phosphate modification on the structure and surface properties of ordered mesoporous SnO2 , 2010 .

[132]  N. Bârsan,et al.  NONDESTRUCTIVE ASSESSMENT OF THE GRAIN SIZE DISTRIBUTION OF SNO2 NANOPARTICLES BY LOW-FREQUENCY RAMAN SPECTROSCOPY , 1997 .

[133]  Balaji Panchapakesan,et al.  Nanoparticle engineering and control of tin oxide microstructures for chemical microsensor applications , 2001 .

[134]  N. Yamazoe,et al.  Preparation of Stabilized Nanosized Tin Oxide Particles by Hydrothermal Treatment , 2000 .

[135]  J. H. He,et al.  Structure and magnetic properties in Mn doped SnO2 nanoparticles synthesized by chemical co-precipitation method , 2008 .

[136]  M. Carotta,et al.  Preparation and characterization of nanosized titania sensing film , 2001 .

[137]  Ming Li,et al.  Size effects on the band-gap of semiconductor compounds , 2006 .

[138]  L. Curtiss,et al.  Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. , 2005, Nano letters.

[139]  P. Siciliano,et al.  Structural distinctions of Fe2O3-In2O3 composites obtained by various sol-gel procedures, and their gas-sensing features , 2007 .

[140]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[141]  W. Qi,et al.  Thermal stability of indium nanocrystals: A theoretical study , 2006 .

[142]  A. Gurlo,et al.  Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[143]  V. Aroutiounian,et al.  Preparation of SnO2 Films with Thermally Stable Nanoparticles , 2003 .

[144]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[145]  G. Rohrer,et al.  Grain boundary segregation in oxide ceramics , 2003 .

[146]  J. Binner Advanced Ceramic Processing and Technology , 1990 .

[147]  Sergei V. Kalinin,et al.  Effect of microstructure on the stability of nanocrystalline tin dioxide ceramics , 1997 .

[148]  W. Stark,et al.  Flame-made platinum/alumina: structural properties and catalytic behaviour in enantioselective hydrogenation , 2003 .

[149]  A. Alivisatos,et al.  Nanocrystals: Building blocks for modern materials design , 1997 .

[150]  O. J. Whittemore,et al.  Pore size evolution during sintering of ceramic oxides , 1990 .

[151]  J. Kappler,et al.  Correlation between XPS, Raman and TEM measurements and the gas sensitivity of Pt and Pd doped SnO2 based gas sensors , 1998 .

[152]  M. Sugiyama,et al.  Size and Shape Transformation of TiO2 Nanoparticles by Irradiation of 308-nm Laser Beam , 2002 .

[153]  Nae-Lih Wu,et al.  Evolution in Structural and Optical Properties of Stannic Oxide Xerogel upon Heat Treatment , 2004 .

[154]  Makoto Egashira,et al.  Effects of microstructure of mesoporous SnO2 powders on their H2 sensing properties , 2009 .

[155]  P. Milani,et al.  Thermal annealing effect on nanostructured TiO2 microsensors by supersonic cluster beam deposition , 2005 .

[156]  C. Tso,et al.  Stability of metal oxide nanoparticles in aqueous solutions. , 2010, Water science and technology : a journal of the International Association on Water Pollution Research.

[157]  J. Li,et al.  Thermodynamic superheating of low-dimensional metals embedded in matrix , 2003 .

[158]  P. N. Lisboa-Filho,et al.  Microstructural and morphological analysis of pure and Ce-doped tin dioxide nanoparticles , 2003 .

[159]  W. Shin,et al.  Analytical Study of Resistance Drift Phenomena on (PANI)xMoO3 Hybrid Thin Films as Gas Sensors , 2008 .

[160]  C. Ding,et al.  Antimony-doped tin dioxide nanometer powders prepared by the hydrothermal method , 2003 .

[161]  E. Callone,et al.  Size stabilization of nanoparticles by polysaccharides: Effectiveness in the wet and curing steps , 2007 .

[162]  Jun Akedo,et al.  Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52/Ti48)O3) Thick Films Deposited by Aerosol Deposition Method , 1999 .

[163]  Kengo Shimanoe,et al.  Roles of Shape and Size of Component Crystals in Semiconductor Gas Sensors I. Response to Oxygen , 2008 .

[164]  A. Cornet,et al.  Faceting characterization of tin dioxide nanocrystals deposited by spray pyrolysis from stannic chloride water solution , 2005 .

[165]  A. Azam,et al.  Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy , 2010 .

[166]  Norio Miura,et al.  Hydrothermally treated sol solution of tin oxide for thin-film gas sensor , 2000 .

[167]  N. Wu,et al.  Inhibition of Crystallite Growth in the Sol-Gel Synthesis of Nanocrystalline Metal Oxides. , 1999, Science.

[168]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[169]  G. Korotcenkov Metal oxides for solid-state gas sensors: What determines our choice? , 2007 .

[170]  J. Nowotny Surface segregation of defects in oxide ceramic materials , 1988 .

[171]  I. Bertóti,et al.  Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2 , 2007 .

[172]  J. Banfield,et al.  Preparing Single-Phase Nanocrystalline Anatase from Amorphous Titania with Particle Sizes Tailored by Temperature , 2001 .

[173]  Yanfa Yan,et al.  Structural instability of Sn-doped In2O3 thin films during thermal annealing at low temperature , 2007 .

[174]  Norio Miura,et al.  Grain‐Size Effects in Tungsten Oxide‐Based Sensor for Nitrogen Oxides , 1994 .

[175]  Andreas Hierlemann,et al.  Micropatterning Layers by Flame Aerosol Deposition‐Annealing , 2008 .

[176]  Jordi Arbiol,et al.  The influence of film structure on In2O3 gas response , 2004 .

[177]  Udo Weimar,et al.  CO consumption of Pd doped SnO2 based sensors , 2001 .

[178]  E. Longo,et al.  A study of the SnO2·Nb2O5 system for an ethanol vapour sensor: a correlation between microstructure and sensor performance , 2001 .

[179]  F. Kruis,et al.  Gas sensing behavior of SnO1.8:Ag films composed of size-selected nanoparticles , 2006 .

[180]  R. Cattrall Chemical Sensors , 1997 .

[181]  F. Liu,et al.  Surface characterization study on SnO2 powder modified by thiourea , 2005 .

[182]  Zhifu Liu,et al.  Influence of annealing on microstructure and NO2-sensing properties of sputtered WO3 thin films , 2007 .

[183]  C. Santilli,et al.  Evolution of the fractal structure during sintering of SnO2 compacted sol-gel powder , 1995 .

[184]  Yiying Wu,et al.  Melting and Welding Semiconductor Nanowires in Nanotubes , 2001 .

[185]  E. V. Kolesnikova,et al.  Cathodoluminescence studies of un-doped and (Cu, Fe, and Co)-doped tin dioxide films deposited by spray pyrolysis , 2010 .

[186]  Ning Wang,et al.  Growth of nanowires , 2008 .

[187]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.

[188]  G. Korotcenkov The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors , 2008 .

[189]  Duk-Dong Lee,et al.  CH4 sensing characteristics of K-, Ca-, Mg impregnated SnO2 sensors , 2001 .

[190]  G. Galbács,et al.  Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films , 2007 .

[191]  S. Olaizola,et al.  Comparative structural study between sputtered and liquid pyrolysis nanocrystaline SnO2 , 2000 .

[192]  K. Ihokura,et al.  The Stannic Oxide Gas SensorPrinciples and Applications , 1994 .

[193]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[194]  S. Andersen,et al.  The Formation of Porous Membranes by Filtration of Aerosol Nanoparticles , 2002 .

[195]  G. Korotcenkov,et al.  Factors influencing the gas sensing characteristics of tin dioxide films deposited by spray pyrolysis: understanding and possibilities of control , 2001 .

[196]  Y. Rong Phase transformations and phase stability in nanocrystalline materials , 2005 .

[197]  Ghenadii Korotcenkov,et al.  Thin film SnO2-based gas sensors: Film thickness influence , 2009 .

[198]  A. Cornet,et al.  CO–CH4 selectivity enhancement by in situ Pd-catalysed microwave SnO2 nanoparticles for gas detectors using active filter , 2001 .

[199]  A. Kolmakov,et al.  Toward the nanoscopic "electronic nose": hydrogen vs carbon monoxide discrimination with an array of individual metal oxide nano- and mesowire sensors. , 2006, Nano letters.

[200]  Hyoungchul Kim,et al.  Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols , 2006, Nature nanotechnology.

[201]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[202]  H. Hong,et al.  Effects of pH on heat transfer nanofluids containing ZrO2 and TiO2 nanoparticles , 2011 .

[203]  N. Bârsan,et al.  Grain size control in nanocrystalline In2O3 semiconductor gas sensors , 1997 .

[204]  G. U. Kulkarni,et al.  Size-dependent chemistry: properties of nanocrystals. , 2002, Chemistry.