Ab initio potential energy surface and near‐infrared spectrum of the He–C2H2 complex

Symmetry‐adapted perturbation theory has been applied to compute the intermolecular potential energy surface of the He–C2H2 complex. The interaction energy is found to be dominated by the first‐order exchange contribution and the dispersion energy. In both contributions it was necessary to include high‐level intramolecular correlation effects. Our potential has a global minimum of em=−22.292 cm−1 near the linear He–HCCH geometry at Rm=8.20 bohr and ϑm=14.16°, and a local minimum at a skew geometry (Rm=7.39 bohr, ϑm=48.82°, and em=−21.983 cm−1). The computed potential energy surface has been analytically fitted and used in converged variational calculations to generate bound rovibrational states of the He–C2H2 molecule and the near‐infrared spectrum, which corresponds to the simultaneous excitation of the vibration and hindered rotation of the C2H2 monomer within the complex. The nature of the bound states and of the spectrum predicted from the ab initio potential are discussed.

[1]  P. Knowles,et al.  Non-expanded dispersion and induction energies, and damping functions, for molecular interactions with application to HF-He , 1986 .

[2]  P. Wormer,et al.  Quantum theoretical calculations of van der Waals interactions between molecules. Anisotropic long range interactions , 1977 .

[3]  Sl,et al.  Many‐body theory of intermolecular induction interactions , 1994 .

[4]  A. J. Sadlej Long range induction and dispersion interactions between Hartree-Fock subsystems , 1980 .

[5]  J. Muenter,et al.  The vibration-rotation spectrum of the argon-acetylene van der Waals complex , 1992 .

[6]  M. Jaszuński Coupled Hartree-Fock calculation of the induction energy , 1980 .

[7]  H. Schaefer,et al.  Analytic energy second derivatives for paired-excited multi-configuration self-consistent-field wavefunctions. Application of the PE MCSCF model to H2O, CH2, HCN, HCCH, H2CO, NH3, CH4, and C2H4 , 1988 .

[8]  Jiří Čížek,et al.  Direct calculation of the Hartree–Fock interaction energy via exchange–perturbation expansion. The He … He interaction , 1987 .

[9]  Clifford E. Dykstra,et al.  Multipole polarizabilities and hyperpolarizabilities of AHn and A2Hn molecules from derivative Hartree-Fock theory , 1987 .

[10]  M. Gutowski,et al.  The impact of higher polarization functions of second-order dispersion energy. Partial wave expansion and damping phenomenon for He2☆ , 1987 .

[11]  Chong Sze Tong,et al.  Anisotropy of atom–atom repulsions , 1994, J. Comput. Chem..

[12]  R. L. Roy,et al.  Calculated rovibrational energy levels and infrared spectrum of He-C2H2 , 1992 .

[13]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Second‐quantization approach and comparison with full configuration interaction results , 1994 .

[14]  Brian C. Smith,et al.  The C–H overtone spectra of acetylene: Bend/stretch interactions below 10 000 cm−1 , 1988 .

[15]  U. Kaldor,et al.  Many-Body Methods in Quantum Chemistry , 1989 .

[16]  Q. Fan,et al.  Theoretical study of linear Cn (n=6−10) and HCnH (n=2−10) molecules , 1989 .

[17]  N. J. Smith,et al.  Relaxation of C2D2(ν4, ν5) by vibration–rotation, translation energy transfer , 1985 .

[18]  P. Wormer,et al.  Intramolecular bond length dependence of the anisotropic dispersion coefficients for interactions of rare gas atoms with N2, CO, Cl2, HCl and HBr , 1993 .

[19]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[20]  I. Mills,et al.  Anharmonic force field of acetylene , 1976 .

[21]  R. Watts,et al.  The anisotropic potential energy surfaces of H2, N2, and Ar with C2H2 from total differential scattering experiments , 1994 .

[22]  Ian W. M. Smith,et al.  Infrared—ultraviolet double resonance measurements on the relaxation of rotational energy in the (31, 214151) Fermi resonance states of C2H2 , 1992 .

[23]  H. Dai,et al.  Orientation dependence in collision induced electronic relaxation studied through van der Waals complexes with isomeric structures , 1994 .

[24]  N. Handy,et al.  Electron densities from the Brueckner Doubles method , 1993 .

[25]  P. Wormer,et al.  Rovibrational spectra of Ar-H2 and Ar-D2 Van der Waals complexes from an ab initio SAPT potential , 1994 .

[26]  G. Diercksen,et al.  Polarisabilities of triply bonded molecules: The 14- and 26-electron systems CN−, N2, HCN, C2H2, C2N2, HC3N and C4H2 , 1990 .

[27]  D. Hurtmans,et al.  The ν3 Fundamental in C2H2 , 1993 .

[28]  A. Stone,et al.  Local and non-local dispersion models , 1989 .

[29]  L. Piela,et al.  First-order perturbation treatment of the short-range repulsion in a system of many closed-shell atoms or molecules , 1976 .

[30]  B. Jeziorski,et al.  Exchange polarization effects in the interaction of closed-shell systems , 1977 .

[31]  R. Miller The Vibrational Spectroscopy and Dynamics of Weakly Bound Neutral Complexes , 1988, Science.

[32]  A. van der Avoird,et al.  An improved intermolecular potential for nitrogen , 1986 .

[33]  P. Bunker,et al.  Molecular symmetry and spectroscopy , 1979 .

[34]  Y. Ohshima,et al.  Pulsed-nozzle Fourier-transform microwave spectroscopy of C2H2·Ar complex , 1989 .

[35]  M. Velegrakis,et al.  Differential translation energy‐loss distributions at 1 eV energies: K–C2H2 , 1991 .

[36]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[37]  D. Yeager,et al.  AB initio linear response calculations of the dipole polarizability of the acetylene molecule , 1988 .

[38]  K. Tang,et al.  An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients , 1984 .

[39]  G. Diercksen,et al.  Symmetry‐adapted perturbation theory potential for the HeK+ molecular ion and transport coefficients of potassium ions in helium , 1994 .

[40]  P. Knowles,et al.  A separable method for the calculation of dispersion and induction energy damping functions with applications to the dimers arising from He, Ne and HF , 1987 .

[41]  T. Kihara,et al.  Intermolecular forces for hydrogen, nitrogen and acetylene , 1977 .

[42]  Harris,et al.  1/R expansion for H2 +: Calculation of exponentially small terms and asymptotics. , 1986, Physical review. A, General physics.

[43]  K. Szalewicz,et al.  Møller–Plesset expansion of the dispersion energy in the ring approximation , 1993 .

[44]  Robert Moszynski,et al.  Explicitly connected expansion for the average value of an observable in the coupled-cluster theory , 1993 .

[45]  M. L. Martin,et al.  Infrared Spectra of Highly Compressed Gas Mixtures of the Type HCl+X. A Theoretical Study , 1965 .

[46]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory calculation of the He-HF intermolecular potential energy surface , 1993 .

[47]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[48]  Y. Matsumoto,et al.  Free‐jet infrared absorption spectroscopy of the C2H2–Ar complex in the doubly degenerate monomer C–H bending region , 1993 .

[49]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[50]  H. Walther,et al.  Vibrational relaxation of acetylene and acetylene–rare‐gas mixtures , 1980 .

[51]  M. Keil,et al.  Anisotropic intermolecular potentials for HeC2H2, HeC2H4, and HeC2H6, and an effective spherical potential for HeCHF3 from multiproperty fits , 1988 .

[52]  W. Hüttner,et al.  The temperature dependence of the cotton-mouton effect of ethane, ethene and ethyne , 1983 .

[53]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[54]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[55]  K. Szalewicz,et al.  Many‐body theory of exchange effects in intermolecular interactions. Density matrix approach and applications to He–F−, He–HF, H2–HF, and Ar–H2 dimers , 1994 .

[56]  P. Wormer,et al.  From Intermolecular Potentials to the Spectra of van der Waals Molecules, and Vice Versa , 1994 .

[57]  P. Wormer,et al.  The interaction potential and transport properties of Na+ ions in He gas , 1994 .

[58]  G. Herzberg,et al.  Infrared and Raman spectra of polyatomic molecules , 1946 .

[59]  Stanisl,et al.  Many‐body symmetry‐adapted perturbation theory of intermolecular interactions. H2O and HF dimers , 1991 .

[60]  Raymond A. Poirier,et al.  Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence , 1983 .

[61]  L. Pedersen,et al.  The Ar–C2H2 intermolecular potential from high resolution spectroscopy and ab initio theory: A case for multicenter interactions , 1993 .

[62]  K. Szalewicz,et al.  Symmetry-adapted perturbation theory of potential-energy surfaces for weakly bound molecular complexes , 1994 .

[63]  J. Hutson,et al.  The intermolecular potential of Ar-acetylene. Information from infrared and microwave spectroscopy , 1992 .

[64]  R. Watts,et al.  The anisotropic interaction of He–C2H2 from differential scattering experiments , 1993 .

[65]  P. Wormer,et al.  Many‐body perturbation theory of frequency‐dependent polarizabilities and van der Waals coefficients: Application to H2O–H2O and Ar–NH3 , 1992 .

[66]  H. Ågren,et al.  Frequency dependent hyperpolarizabilities of polyynes , 1993 .

[67]  P. Wormer,et al.  Correlated van der Waals coefficients for dimers consisting of He, Ne, H2, and N2 , 1988 .

[68]  K. Szalewicz,et al.  Symmetry-adapted double-perturbation analysis of intramolecular correlation effects in weak intermolecular interactions , 1979 .

[69]  J. Toennies,et al.  Vibrationally resolved inelastic scattering and charge transfer in H sup + +C sub 2 H sub 2 collisions , 1991 .

[70]  A. Thakkar,et al.  How important is electron correlation for the hyperpolarizability of ethyne , 1990 .

[71]  J. Tennyson,et al.  Variationally exact rovibrational spectra of nonrigid triatomics: The HeHF van der Waals molecule , 1983 .

[72]  P. Wormer,et al.  Ab initio studies of the interactions in Van der Waals molecules , 1980 .

[73]  J. Toennies,et al.  Scattering experiments with hydrogen atoms: Velocity dependence of the integral total cross section with simple molecules in the energy range 0.01–1.00 eV (c.m.) , 1975 .

[74]  Ian W. M. Smith,et al.  Vibrational relaxation of C2H2 and C2D2 by vibration–rotation, translation (V–R, T) energy transfer , 1988 .

[75]  Ian W. M. Smith,et al.  Vibrational relaxation of C2H2(v3,v2+v4+v5) in self-collisions and in collisions with the noble gases , 1990 .

[76]  K. Szalewicz,et al.  On the convergence of the symmetrized Rayleigh-Schrödinger perturbation theory for molecular interaction energies , 1992 .

[77]  W. Wakeham,et al.  Status and future developments in the study of transport properties , 1992 .

[78]  Stanisl,et al.  Many‐body perturbation theory of electrostatic interactions between molecules: Comparison with full configuration interaction for four‐electron dimers , 1993 .

[79]  P. Wormer,et al.  Near‐infrared spectrum and rotational predissociation dynamics of the He–HF complex from an ab initio symmetry‐adapted perturbation theory potential , 1994 .

[80]  M. Keil,et al.  Damping of total differential cross sections: Observations and empirical anisotropic potentials for HeC2H2 and HeOCS , 1987 .

[81]  D. Nesbitt High-resolution infrared spectroscopy of weakly bound molecular complexes , 1988 .

[82]  M. Spackman Accurate prediction of static dipole polarizabilities with moderately sized basis sets , 1989 .