Illustrative visualization: interrogating triangulated surfaces
暂无分享,去创建一个
Hans Hagen | Robert J. Moorhead | Sven Böttger | Natallia Kotava | Christian Wagner | Yanlin Guan | H. Hagen | R. Moorhead | N. Kotava | Yanlin Guan | Christian Wagner | S. Böttger
[1] R. R. Martin. Estimation of Principal curvatures from Range Data , 1998, Int. J. Shape Model..
[2] Gady Agam,et al. A sampling framework for accurate curvature estimation in discrete surfaces , 2005, IEEE Transactions on Visualization and Computer Graphics.
[3] Günther Greiner,et al. Interactive examination of surface quality on car bodies , 2004, Comput. Aided Des..
[4] Gerald E. Farin,et al. The Curvature of Characteristic Curves on Surfaces , 1997, IEEE Computer Graphics and Applications.
[5] Josef Hoschek. Smoothing of curves and surfaces , 1985, Comput. Aided Geom. Des..
[6] R. Klass. Correction of local surface irregularities using reflection lines , 1980 .
[7] Jean-Marie Morvan,et al. On the angular defect of triangulations and the pointwise approximation of curvatures , 2003, Comput. Aided Geom. Des..
[8] Gabriel Taubin,et al. Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.
[9] James F. Blinn,et al. Texture and reflection in computer generated images , 1998 .
[10] Bernd Hamann,et al. Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.
[11] P. Krsek. Algorithms for Computing Curvatures from Range Data , 2001 .
[12] Hans Hagen,et al. Methods for surface interrogation , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.
[13] Jörg Peters,et al. Curved PN triangles , 2001, I3D '01.
[14] Gershon Elber,et al. A comparison of Gaussian and mean curvatures estimation methods on triangular meshes , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).
[15] Steven Skiena,et al. Problems in geometric probing , 1989, Algorithmica.
[16] Christoph M. Hoffmann. A dimensionality paradigm for surface interrogations , 1990, Comput. Aided Geom. Des..
[17] Gerald Farin,et al. Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..
[18] Chenshi Dong,et al. Curvatures estimation on triangular mesh , 2005 .
[19] John C. Hart,et al. The CAVE: audio visual experience automatic virtual environment , 1992, CACM.
[20] Kouki Watanabe,et al. Detection of Salient Curvature Features on Polygonal Surfaces , 2001, Comput. Graph. Forum.
[21] Hans-Peter Seidel,et al. Modeling of surfaces with fair reflection line pattern , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.
[22] Ju-Yeop Gang,et al. Efficient Algorithm for the Real-time Generation of Reflection Lines , 2001 .
[23] E. Kaufmann,et al. Smoothing surfaces using reflection lines for families of splines , 1988 .
[24] Anshuman Razdan,et al. Curvature estimation scheme for triangle meshes using biquadratic Bézier patches , 2005, Comput. Aided Des..
[25] Carolina Cruz-Neira,et al. Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE , 2023 .
[26] Mark Meyer,et al. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.
[27] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[28] Sylvain Petitjean,et al. A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.
[29] R. Moorhead,et al. Immersive Surface Interrogation , 2002 .
[30] Dereck S. Meek,et al. On surface normal and Gaussian curvature approximations given data sampled from a smooth surface , 2000, Comput. Aided Geom. Des..
[31] Rick Stevens,et al. Toward real-time interactive virtual prototyping of mechanical systems: Experiences coupling virtual reality with finite element analysis , 1996 .
[32] Helmut Pottmann,et al. Visualizing functions on a surface , 1991, Comput. Animat. Virtual Worlds.
[33] Brian Wyvill,et al. An algorithm for polygon subdivision based on vertex normals , 1997, Proceedings Computer Graphics International.