Illustrative visualization: interrogating triangulated surfaces

Geometrical modeling is a crucial aspect of simulations involving manufactured objects and is usually performed using free-form surfaces. However, to simulate the flow through or about a manufactured object or to simulate structural integrity, the free-form surfaces must be tessellated into triangulated surfaces. To concurrently visualize the simulation results and the quality of the surfaces, we present two novel visualization algorithms for triangulated surfaces as opposed to the traditional freeform surfaces. The proposed algorithms are for curvature estimation based on local surface fitting with cubic triangular Bézier patches and for reflection-line computation.

[1]  R. R. Martin Estimation of Principal curvatures from Range Data , 1998, Int. J. Shape Model..

[2]  Gady Agam,et al.  A sampling framework for accurate curvature estimation in discrete surfaces , 2005, IEEE Transactions on Visualization and Computer Graphics.

[3]  Günther Greiner,et al.  Interactive examination of surface quality on car bodies , 2004, Comput. Aided Des..

[4]  Gerald E. Farin,et al.  The Curvature of Characteristic Curves on Surfaces , 1997, IEEE Computer Graphics and Applications.

[5]  Josef Hoschek Smoothing of curves and surfaces , 1985, Comput. Aided Geom. Des..

[6]  R. Klass Correction of local surface irregularities using reflection lines , 1980 .

[7]  Jean-Marie Morvan,et al.  On the angular defect of triangulations and the pointwise approximation of curvatures , 2003, Comput. Aided Geom. Des..

[8]  Gabriel Taubin,et al.  Estimating the tensor of curvature of a surface from a polyhedral approximation , 1995, Proceedings of IEEE International Conference on Computer Vision.

[9]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1998 .

[10]  Bernd Hamann,et al.  Curvature Approximation for Triangulated Surfaces , 1993, Geometric Modelling.

[11]  P. Krsek Algorithms for Computing Curvatures from Range Data , 2001 .

[12]  Hans Hagen,et al.  Methods for surface interrogation , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[13]  Jörg Peters,et al.  Curved PN triangles , 2001, I3D '01.

[14]  Gershon Elber,et al.  A comparison of Gaussian and mean curvatures estimation methods on triangular meshes , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[15]  Steven Skiena,et al.  Problems in geometric probing , 1989, Algorithmica.

[16]  Christoph M. Hoffmann A dimensionality paradigm for surface interrogations , 1990, Comput. Aided Geom. Des..

[17]  Gerald Farin,et al.  Triangular Bernstein-Bézier patches , 1986, Comput. Aided Geom. Des..

[18]  Chenshi Dong,et al.  Curvatures estimation on triangular mesh , 2005 .

[19]  John C. Hart,et al.  The CAVE: audio visual experience automatic virtual environment , 1992, CACM.

[20]  Kouki Watanabe,et al.  Detection of Salient Curvature Features on Polygonal Surfaces , 2001, Comput. Graph. Forum.

[21]  Hans-Peter Seidel,et al.  Modeling of surfaces with fair reflection line pattern , 1999, Proceedings Shape Modeling International '99. International Conference on Shape Modeling and Applications.

[22]  Ju-Yeop Gang,et al.  Efficient Algorithm for the Real-time Generation of Reflection Lines , 2001 .

[23]  E. Kaufmann,et al.  Smoothing surfaces using reflection lines for families of splines , 1988 .

[24]  Anshuman Razdan,et al.  Curvature estimation scheme for triangle meshes using biquadratic Bézier patches , 2005, Comput. Aided Des..

[25]  Carolina Cruz-Neira,et al.  Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE , 2023 .

[26]  Mark Meyer,et al.  Discrete Differential-Geometry Operators for Triangulated 2-Manifolds , 2002, VisMath.

[27]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[28]  Sylvain Petitjean,et al.  A survey of methods for recovering quadrics in triangle meshes , 2002, CSUR.

[29]  R. Moorhead,et al.  Immersive Surface Interrogation , 2002 .

[30]  Dereck S. Meek,et al.  On surface normal and Gaussian curvature approximations given data sampled from a smooth surface , 2000, Comput. Aided Geom. Des..

[31]  Rick Stevens,et al.  Toward real-time interactive virtual prototyping of mechanical systems: Experiences coupling virtual reality with finite element analysis , 1996 .

[32]  Helmut Pottmann,et al.  Visualizing functions on a surface , 1991, Comput. Animat. Virtual Worlds.

[33]  Brian Wyvill,et al.  An algorithm for polygon subdivision based on vertex normals , 1997, Proceedings Computer Graphics International.