Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part I: Data Acquisition, Live Processing, and Storage.

The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.

[1]  I. MacLaren,et al.  Three-dimensional subnanoscale imaging of unit cell doubling due to octahedral tilting and cation modulation in strained perovskite thin films , 2018, Physical Review Materials.

[2]  R. Henderson,et al.  Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy , 2014, Ultramicroscopy.

[3]  Malcolm L. H. Green,et al.  Simultaneous atomic-resolution electron ptychography and Z-contrast imaging of light and heavy elements in complex nanostructures , 2016, Nature Communications.

[4]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[5]  A. Crewe High resolution scanning microscopy of biological specimens. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  J. Chapman,et al.  Modified differential phase contrast Lorentz Microscopy for improved imaging of magnetic structures , 1990, International Conference on Magnetics.

[7]  K. Taguchi,et al.  Vision 20/20: Single photon counting x-ray detectors in medical imaging. , 2013, Medical physics.

[8]  V. O’Shea,et al.  Sub-100 nanosecond temporally resolved imaging with the Medipix3 direct electron detector. , 2019, Ultramicroscopy.

[9]  J. Abrahams,et al.  Electron crystallography with the EIGER detector , 2018, IUCrJ.

[10]  Colin Ophus,et al.  Non-spectroscopic composition measurements of SrTiO3-La0.7Sr0.3MnO3 multilayers using scanning convergent beam electron diffraction , 2017 .

[11]  Juha Plosila,et al.  Timepix3: a 65K channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse readout , 2014 .

[12]  I. Brown,et al.  The chemical bond and atomic displacements in SrTiO3 from X‐ray diffraction analysis , 1995 .

[13]  N. Shibata,et al.  Dynamics of annular bright field imaging in scanning transmission electron microscopy. , 2010, Ultramicroscopy.

[14]  R. Hadfield,et al.  Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires , 2017 .

[15]  Travis E. Oliphant,et al.  Guide to NumPy , 2015 .

[16]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[17]  Michael Campbell,et al.  Medipix3: A 64 k pixel detector readout chip working in single photon counting mode with improved spectrometric performance , 2011 .

[18]  Emmanuelle Gouillart,et al.  Analyzing microtomography data with Python and the scikit-image library , 2016, Advanced Structural and Chemical Imaging.

[20]  David A. Bader,et al.  Hierarchical Data Format , 2011, Encyclopedia of Parallel Computing.

[21]  J. A. Mir,et al.  Characterisation of the Medipix 3 detector for 60 and 80 keV electrons , 2017 .

[22]  Daniel C. Ralph,et al.  High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy , 2016, Microscopy and Microanalysis.

[23]  M. Turala,et al.  Silicon tracking detectors—historical overview , 2005 .

[24]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[25]  Lewys Jones,et al.  Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. , 2015, Ultramicroscopy.

[26]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[27]  R. Henderson,et al.  Electron imaging with Medipix2 hybrid pixel detector. , 2007, Ultramicroscopy.

[28]  Jaewook Kim,et al.  Image registration of low signal-to-noise cryo-STEM data. , 2018, Ultramicroscopy.

[29]  A V Crewe,et al.  Scanning Electron Microscopes: Is High Resolution Possible? , 1966, Science.

[30]  X. Llopart,et al.  Towards a new generation of pixel detector readout chips , 2016 .

[31]  A. V. Crewe,et al.  A High‐Resolution Scanning Transmission Electron Microscope , 1968 .

[32]  Christophe Schlick,et al.  High Dynamic Range Pixels , 1994, Graphics gems.

[33]  P. Delpierre,et al.  A history of hybrid pixel detectors, from high energy physics to medical imaging , 2014 .

[34]  D. Maneuski,et al.  Pixelated detectors and improved efficiency for magnetic imaging in STEM differential phase contrast. , 2016, Ultramicroscopy.

[35]  P. Batson,et al.  The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. , 1978, Ultramicroscopy.

[36]  R. Plackett,et al.  Merlin: a fast versatile readout system for Medipix3 , 2013 .

[37]  H. Soltau,et al.  Influence of distortions of recorded diffraction patterns on strain analysis by nano-beam electron diffraction. , 2019, Ultramicroscopy.

[38]  A. Kirkland,et al.  Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy , 2019, Nature Communications.

[39]  Q. Ramasse,et al.  Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi0.85Nd0.15)(Ti0.1Fe0.9)O3 , 2013 .

[40]  N. Wermes,et al.  Pixel detectors for tracking and their spin-off in imaging applications , 2005 .

[41]  Ultrafast Ptychography with 7500 Frames per Second , 2019, Microscopy and Microanalysis.

[42]  M. Chi,et al.  Sub-Ångstrom electric field measurements on a universal detector in a scanning transmission electron microscope , 2018, Advanced Structural and Chemical Imaging.

[43]  A. Kirkland,et al.  Direct Detectors for Electron Microscopy , 2014 .

[44]  H. Rose,et al.  Conditions and reasons for incoherent imaging in STEM , 1996 .

[45]  Naoya Shibata,et al.  New area detector for atomic-resolution scanning transmission electron microscopy. , 2010, Journal of electron microscopy.

[46]  Dimosthenis E. Bolanakis,et al.  CMOS Monolithic Active Pixel Sensors (MAPS): developments and future outlook , 2006 .

[47]  Joachim Frank,et al.  The Role of Correlation Techniques in Computer Image Processing , 1980 .

[48]  Naoya Shibata,et al.  Electric field imaging of single atoms , 2017, Nature Communications.

[49]  P. Kotula,et al.  A pnCCD-based, fast direct single electron imaging camera for TEM and STEM , 2016 .

[50]  Stefan Behnel,et al.  Cython: The Best of Both Worlds , 2011, Computing in Science & Engineering.

[51]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[52]  Stephen J. Pennycook,et al.  High-resolution Z-contrast imaging of crystals , 1991 .

[53]  Michael Campbell,et al.  The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging , 2013 .

[54]  J. Chapman,et al.  Transmission electron microscopies of magnetic microstructures , 1999 .

[55]  Peter Moeck,et al.  Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction , 2010 .

[56]  F. Scholze,et al.  Mean energy required to produce an electron-hole pair in silicon for photons of energies between 50 and 1500 eV , 1998 .

[57]  Susanne Stemmer,et al.  Position averaged convergent beam electron diffraction: theory and applications. , 2010, Ultramicroscopy.

[58]  Manfred von Ardenne,et al.  Das Elektronen-Rastermikroskop , 1938 .

[59]  A. Crewe The current state of high resolution scanning electron microscopy , 1970, Quarterly Reviews of Biophysics.

[60]  S. Nicolopoulos,et al.  A Comparison of a Direct Electron Detector and a High-Speed Video Camera for a Scanning Precession Electron Diffraction Phase and Orientation Mapping , 2020, Microscopy and Microanalysis.

[61]  Colin Ophus,et al.  Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM): From Scanning Nanodiffraction to Ptychography and Beyond , 2019, Microscopy and Microanalysis.

[62]  C. Ophus A fast image simulation algorithm for scanning transmission electron microscopy , 2017, Advanced Structural and Chemical Imaging.

[63]  Sergei V. Kalinin,et al.  USID and Pycroscopy -- Open frameworks for storing and analyzing spectroscopic and imaging data , 2019, 1903.09515.

[64]  H. Rose,et al.  Optimum rotationally symmetric detector configurations for phase-contrast imaging in scanning transmission electron microscopy , 1995 .

[65]  Tobias Richter,et al.  The NeXus data format , 2015, Journal of applied crystallography.

[66]  P. Midgley,et al.  Precession electron diffraction – a topical review , 2015, IUCrJ.

[67]  J. A. Mir,et al.  Characterisation of the Medipix3 detector for 60 and 80keV electrons. , 2017, Ultramicroscopy.

[68]  A. Donald,et al.  A study of grain boundary segregation in Cu-Bi alloys using STEM , 1979 .

[69]  A. J. D’Alfonso,et al.  Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy images , 2009 .

[70]  Thomas Tybell,et al.  Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting , 2017, Advanced Structural and Chemical Imaging.