Self-assembly of hierarchical MoSx/CNT nanocomposites (2

[1]  Wenhui Shi,et al.  Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. , 2013, Small.

[2]  Oliver G. Schmidt,et al.  Hierarchical MoS2/Polyaniline Nanowires with Excellent Electrochemical Performance for Lithium‐Ion Batteries , 2013, Advanced materials.

[3]  Fei Zhao,et al.  Super‐Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries , 2013 .

[4]  S. Mitra,et al.  High-rate and high-energy-density lithium-ion battery anode containing 2D MoS₂ nanowall and cellulose binder. , 2013, ACS applied materials & interfaces.

[5]  Lain-Jong Li,et al.  Highly Efficient Electrocatalytic Hydrogen Production by MoSx Grown on Graphene‐Protected 3D Ni Foams , 2013, Advanced materials.

[6]  S. K. Srivastava,et al.  MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. , 2013, Chemical communications.

[7]  Yongyao Xia,et al.  Binary Li4Ti5O12‐Li2Ti3O7 Nanocomposite as an Anode Material for Li‐Ion Batteries , 2013 .

[8]  Jian Yang,et al.  Enhanced lithium storage performances of hierarchical hollow MoS₂ nanoparticles assembled from nanosheets. , 2013, ACS applied materials & interfaces.

[9]  Dongyun Chen,et al.  CTAB-assisted synthesis of single-layer MoS2–graphene composites as anode materials of Li-ion batteries , 2013 .

[10]  Z. Yin,et al.  Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. , 2013, Small.

[11]  Lidong Li,et al.  Flexible free-standing graphene/SnO₂ nanocomposites paper for Li-ion battery. , 2012, ACS applied materials & interfaces.

[12]  Yu-Chuan Lin,et al.  Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. , 2012, Nanoscale.

[13]  Micheál D. Scanlon,et al.  Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution , 2012 .

[14]  H. Hng,et al.  A facile approach to nanoarchitectured three-dimensional graphene-based Li–Mn–O composite as high-power cathodes for Li-ion batteries , 2012, Beilstein journal of nanotechnology.

[15]  X. Lou,et al.  Synthesis of MoS(2)-C one-dimensional nanostructures with improved lithium storage properties. , 2012, ACS applied materials & interfaces.

[16]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[17]  Jon P. Owejan,et al.  Solid Electrolyte Interphase in Li-Ion Batteries: Evolving Structures Measured In situ by Neutron Reflectometry , 2012 .

[18]  Yong‐Sheng Hu,et al.  Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. , 2012, Chemistry, an Asian journal.

[19]  Rodney S. Ruoff,et al.  Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. , 2012, Nano letters.

[20]  Huimin Wu,et al.  Solvothermal Synthesis of MoS 2 /Carbon Nanotube Composites with Improved Electrochemical Performance for Lithium Ion Batteries , 2012 .

[21]  Yong‐Sheng Hu,et al.  Lithium storage performance in ordered mesoporous MoS2 electrode material , 2012 .

[22]  Yu‐Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[23]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[24]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[25]  Kun Chang,et al.  Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries , 2011 .

[26]  A. Okotrub,et al.  Charge Transfer in the MoS2/Carbon Nanotube Composite , 2011 .

[27]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[28]  Phillip K. Koech,et al.  Electrochemically Induced High Capacity Displacement Reaction of PEO/MoS2/Graphene Nanocomposites with Lithium , 2011 .

[29]  H. Vrubel,et al.  Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water , 2011 .

[30]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[31]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[32]  R. Ruoff,et al.  Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. , 2011, ACS nano.

[33]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[34]  Bruno Scrosati,et al.  An advanced lithium ion battery based on high performance electrode materials. , 2011, Journal of the American Chemical Society.

[35]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[36]  Guangmin Zhou,et al.  Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. , 2010, ACS nano.

[37]  Rong Zeng,et al.  Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications , 2009 .

[38]  B. Wei,et al.  In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications. , 2009, ACS nano.

[39]  Itaru Honma,et al.  Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. , 2009, Nano letters.

[40]  M. Armand,et al.  Building better batteries , 2008, Nature.

[41]  Jing Liang,et al.  Template-Directed Materials for Rechargeable Lithium-Ion Batteries† , 2008 .

[42]  Jinghong Li,et al.  Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes , 2007 .

[43]  F. Besenbacher,et al.  Cluster-support interactions and morphology of MoS2 nanoclusters in a graphite-supported hydrotreating model catalyst. , 2006, Journal of the American Chemical Society.

[44]  Yifan Zheng,et al.  Hydrothermal synthesis and characterization of CNT@MoS2 nanotubes , 2006 .

[45]  Zhu-de Xu,et al.  Carbon nanotubes coated with tubular MoS2 layers prepared by hydrothermal reaction , 2006 .

[46]  S. Dou,et al.  Tungsten Disulfide Nanotubes for Lithium Storage , 2004 .

[47]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[48]  C. Lenardi,et al.  XPS investigation of preferential sputtering of S from MoS2 and determination of MoSx stoichiometry from Mo and S peak positions , 1999 .

[49]  G. Thompson,et al.  XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions , 1997 .

[50]  J. Niemantsverdriet,et al.  Structure of Amorphous MoS3 , 1995 .

[51]  K. Hodgson,et al.  Reactions of MoS3, WS3, WSe3, and NbSe3 with lithium. Metal cluster rearrangement revealed by EXAFS , 1986 .

[52]  K. Hodgson,et al.  Reactions of molybdenum trisulfide, tungsten trisulfide, tungsten triselenide, and niobium triselenide with lithium. Metal cluster rearrangement revealed by EXAFS , 1986 .