SPC Monitoring and Variance Estimation

According to W. Shewhart, process variation can be classified into assignable cause and common cause variations. Assignable cause variation can be eliminated by statistical process control (SPC) methods through identification and elimination of the root cause of the process shift. Common cause variation is inherent in the process and is generally difficult to reduce by SPC methods. However, if the common cause variation can be modeled by an autocorrelated process and physical variables are available to adjust the output, the common cause variation can be reduced by automatic process control (APC) methods through feedback/feedforward controllers. Integration of SPC and APC methods can result in major improvements in industrial efficiency.

[1]  Herbert Moskowitz,et al.  Run-Length Distributions of Special-Cause Control Charts for Correlated Processes , 1994 .

[2]  S. A. Vander Wiel,et al.  Monitoring processes that wander using integrated moving average models , 1996 .

[3]  G. S. Fishman Grouping Observations in Digital Simulation , 1978 .

[4]  L. Schruben,et al.  Properties of standardized time series weighted area variance estimators , 1990 .

[5]  Lee W. Schruben,et al.  Note-New Confidence Interval Estimators Using Standardized Time Series , 1990 .

[6]  Douglas C. Montgomery,et al.  A Discussion on Statistically-Based Process Monitoring and Control , 1997 .

[7]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[8]  T. Harris,et al.  Statistical process control procedures for correlated observations , 1991 .

[9]  David Goldsman,et al.  Large-sample normality of the batch-means variance estimator , 2002, Oper. Res. Lett..

[10]  George C. Runger,et al.  Average run lengths for cusum control charts applied to residuals , 1995 .

[11]  George E. P. Box,et al.  Statistical process monitoring and feedback adjustment: a discussion , 1992 .

[12]  George C. Runger,et al.  Batch-means control charts for autocorrelated data , 1996 .

[13]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[14]  Layth C. Alwan Effects of autocorrelation on control chart performance , 1992 .

[15]  Ward Whitt,et al.  Estimating the asymptotic variance with batch means , 1991, Oper. Res. Lett..

[16]  Douglas C. Montgomery,et al.  Some Statistical Process Control Methods for Autocorrelated Data , 1991 .

[17]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[18]  S. Pollock,et al.  Weighted Batch Means for Confidence Intervals in Steady-State Simulations , 1993 .

[19]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[20]  Wei Jiang,et al.  A New SPC Monitoring Method: The ARMA Chart , 2000, Technometrics.

[21]  Kwok-Leung Tsui,et al.  A Review of Statistical and Fuzzy Quality Control Charts Based on Categorical Data , 1997 .

[22]  Donald L. Iglehart,et al.  Simulation Output Analysis Using Standardized Time Series , 1990, Math. Oper. Res..

[23]  David Goldsman,et al.  Properties of Batched Quadratic-Form Variance Parameter Estimators for Simulations , 2001, INFORMS J. Comput..

[24]  Layth C. Alwan,et al.  TIME-SERIES INVESTIGATION OF SUBSAMPLE MEAN CHARTS , 1992 .

[25]  Bruce W. Schmeiser,et al.  Batch Size Effects in the Analysis of Simulation Output , 1982, Oper. Res..

[26]  Bruce W. Schmeiser,et al.  Overlapping batch means: something for nothing? , 1984, WSC '84.

[27]  Layth C. Alwan,et al.  Time-Series Modeling for Statistical Process Control , 1988 .

[28]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[29]  George C. Runger,et al.  Model-Based and Model-Free Control of Autocorrelated Processes , 1995 .

[30]  Wei Jiang,et al.  Proportional Integral Derivative Charts for Process Monitoring , 2002, Technometrics.

[31]  Benjamin M. Adams,et al.  An evaluation of forecast-based quality control schemes , 1994 .

[32]  George S. Fishman,et al.  Computational experience with the batch means method , 1997, WSC '97.

[33]  B. Schmeiser,et al.  Optimal mean-squared-error batch sizes , 1995 .

[34]  David Goldsman,et al.  Overlapping variance estimators for simulations , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[35]  George S. Fishman,et al.  An Implementation of the Batch Means Method , 1997, INFORMS J. Comput..

[36]  J. Banks,et al.  Handbook of Simulation , 1998 .

[37]  Douglas C. Montgomery,et al.  Research Issues and Ideas in Statistical Process Control , 1999 .

[38]  Herbert Moskowitz,et al.  Control Charts in the Presence of Data Correlation , 1992 .

[39]  Bruce W. Schmeiser,et al.  Variance of the Sample Mean: Properties and Graphs of Quadratic-Form Estimators , 1993, Oper. Res..

[40]  George E. P. Box,et al.  Statistical Control: By Monitoring and Feedback Adjustment , 1997 .

[41]  Keebom Kang,et al.  Cramér-von Mises variance estimators for simulations , 1991, WSC '91.

[42]  Averill M. Law,et al.  A Sequential Procedure for Determining the Length of a Steady-State Simulation , 1979, Oper. Res..

[43]  David Goldsman,et al.  Standardized Time Series L P -Norm Variance Estimators for Simulations , 1998 .

[44]  Vijayan N. Nair,et al.  On the efficiency and robustness of discrete proportional-integral control schemes , 1998 .

[45]  Keebom Kang,et al.  An Investigation of Finite-Sample Behavior of Confidence Interval Estimators , 1992, Oper. Res..

[46]  Thomas P. Ryan,et al.  The estimation of sigma for an X chart: MR/d2 or S/c4? , 1990 .