On the Minimal General Sum-Connectivity Index of Connected Graphs Without Pendant Vertices

The general sum-connectivity index of a graph <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula>, denoted by <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }(G)$ </tex-math></inline-formula>, is defined as <inline-formula> <tex-math notation="LaTeX">$\sum _{uv\in E(G)}(d(u)+d(v))^{\alpha }$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$uv$ </tex-math></inline-formula> is the edge connecting the vertices <inline-formula> <tex-math notation="LaTeX">$u,v\in V(G)$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$d(w)$ </tex-math></inline-formula> denotes the degree of a vertex <inline-formula> <tex-math notation="LaTeX">$w\in V(G)$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> is a non-zero real number. For <inline-formula> <tex-math notation="LaTeX">$\alpha =-1/2$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n\geq 11$ </tex-math></inline-formula>, Wang <italic>et al.</italic> [On the sum-connectivity index, Filomat 25 (2011) 29–42] proved that <inline-formula> <tex-math notation="LaTeX">$K_{2} + \overline {K}_{n-2}$ </tex-math></inline-formula> is the unique graph with minimum <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }$ </tex-math></inline-formula> value among all the <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>–vertex graphs having minimum degree at least 2, where <inline-formula> <tex-math notation="LaTeX">$K_{2} + \overline {K}_{n-2}$ </tex-math></inline-formula> is the join of the 2-vertex complete graph <inline-formula> <tex-math notation="LaTeX">$K_{2}$ </tex-math></inline-formula> and the edgeless graph <inline-formula> <tex-math notation="LaTeX">$\overline {K}_{n-2}$ </tex-math></inline-formula> on <inline-formula> <tex-math notation="LaTeX">$n-2$ </tex-math></inline-formula> vertices. Tomescu [2-connected graphs with minimum general sum-connectivity index, Discrete Appl. Math. 178 (2014) 135–141] proved that the result of Wang <italic>et al.</italic> holds also for <inline-formula> <tex-math notation="LaTeX">$n\geq 3$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$-1\leq \alpha < -0.867$ </tex-math></inline-formula>. In this paper, it is shown that the aforementioned result of Wang <italic>et al.</italic> remains valid if the graphs under consideration are connected, <inline-formula> <tex-math notation="LaTeX">$n\geq 6$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$-1\leq \alpha < \alpha _{0}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\alpha _{0}\approx -0.68119$ </tex-math></inline-formula> is the unique real root of the equation <inline-formula> <tex-math notation="LaTeX">$\chi _{_\alpha }(K_{2} + \overline {K}_{4}) - \chi _{_\alpha }(C_{6})=0$ </tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">$C_{6}$ </tex-math></inline-formula> is the cycle on 6 vertices.

[1]  Frank Harary,et al.  Graph Theory , 2016 .

[2]  I. Gutman Degree-Based Topological Indices , 2013 .

[3]  Kexiang Xu,et al.  A Survey on Graphs Extremal with Respect to Distance-Based Topological Indices , 2014 .

[4]  M. Sababheh Graph indices via the AM-GM inequality , 2017, Discret. Appl. Math..

[5]  Shaohui Wang,et al.  Zagreb Indices and Multiplicative Zagreb Indices of Eulerian Graphs , 2019 .

[6]  Darko Dimitrov,et al.  On the extremal graphs with respect to bond incident degree indices , 2017, Discret. Appl. Math..

[7]  Qing Cui,et al.  The general Randić index of trees with given number of pendent vertices , 2017, Appl. Math. Comput..

[8]  Darko Dimitrov,et al.  On the extremal graphs for general sum-connectivity index (χα) with given cyclomatic number when α>1 , 2019, Discret. Appl. Math..

[9]  Bo Zhou,et al.  On general sum-connectivity index , 2010 .

[10]  Ivan Gutman,et al.  General sum-connectivity index, general product-connectivity index, general Zagreb index and coindices of line graph of subdivision graphs , 2017, AKCE Int. J. Graphs Comb..

[11]  Renying CHANG,et al.  On The Harmonic Index and The Minimum Degree of A Graph , 2013 .

[12]  Zhongzhu Liu,et al.  New bounds on Zagreb indices , 2017 .

[13]  Boris Furtula,et al.  Randić index and information , 2018, AKCE Int. J. Graphs Comb..

[15]  Ioan Tomescu 2-Connected graphs with minimum general sum-connectivity index , 2014, Discret. Appl. Math..

[16]  Z. Du,et al.  On the difference between atom-bond connectivity index and Randić index of binary and chemical trees , 2017 .

[17]  Qing Cui,et al.  On the general sum-connectivity index of trees with given number of pendent vertices , 2017, Discret. Appl. Math..

[18]  Zahid Raza,et al.  Bounds for the general sum-connectivity index of composite graphs , 2017, Journal of inequalities and applications.

[19]  M. Randic Characterization of molecular branching , 1975 .

[20]  K. Pattabiraman,et al.  Degree and Distance Based Topological Indices of Graphs , 2017, Electron. Notes Discret. Math..

[21]  I. Gutman,et al.  Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons , 1972 .

[22]  Nenad Trinajstic,et al.  ON THE SUM-CONNECTIVITY INDEX , 2011 .

[23]  Mohammad Reza Farahani,et al.  Sharp Bounds for the General Sum-Connectivity Indices of Transformation Graphs , 2017 .

[24]  José L. Sánchez,et al.  CMMSE-on the first general Zagreb index , 2018, Journal of Mathematical Chemistry.

[25]  Ali Ghalavand,et al.  Ordering chemical graphs by Randić and sum-connectivity numbers , 2018, Appl. Math. Comput..

[26]  D. Cvetkovic,et al.  Graph theory and molecular orbitals , 1974 .

[27]  Akbar Ali An alternative but short proof of a result of Zhu and Lu concerning general sum-connectivity index , 2017 .

[28]  H. Deng,et al.  A lower bound for the harmonic index of a graph with minimum degree at least two , 2013 .

[29]  Emina I. Milovanovic,et al.  SOME INEQUALITIES FOR GENERAL SUM-CONNECTIVITY INDEX , 2020 .

[30]  T. Mansour,et al.  Correcting a paper on the Randi{\'c} and geometric--arithmetic indices , 2017 .

[31]  Kinkar Ch. Das,et al.  Inverse degree, Randic index and harmonic index of graphs , 2017 .

[32]  Bo Zhou,et al.  On a novel connectivity index , 2009 .

[33]  Mingqiang An,et al.  Extremal polyomino chains with respect to general sum-connectivity index , 2017, Ars Comb..

[34]  Yongtang Shi,et al.  Sharp bounds for the Randić index of graphs with given minimum and maximum degree , 2018, Discret. Appl. Math..

[35]  Shaohui Wang,et al.  On the sharp lower bounds of Zagreb indices of graphs with given number of cut vertices , 2017, 1709.01542.

[36]  About the Randić Connectivity, Modify Randić Connectivity and Sum-connectivity Indices of Titania Nanotubes TiO2(m,n). , 2017, Acta chimica Slovenica.

[37]  More results on extremum Randic indices of (molecular) trees , 2018 .

[38]  Bo Zhou,et al.  Minimum general sum-connectivity index of unicyclic graphs , 2010 .

[39]  Ligong Wang,et al.  A lower bound for the harmonic index of a graph with minimum degree at least three , 2013 .

[40]  Leonid Bedratyuk,et al.  The star sequence and the general first Zagreb index , 2017, 1706.00829.

[41]  Ioan Tomescu,et al.  Minimum general sum-connectivity index of trees and unicyclic graphs having a given matching number , 2017, Discret. Appl. Math..