Achiral Organic, Inorganic, and Metal Crystals as Auxiliaries for Asymmetric Transformations

The use of achiral crystalline architectures as intermediate auxiliaries for the performance of “absolute” asymmetric transformations is reviewed. Such architectures are delineated, in some cases, by pairs of homochiral surfaces of opposite handedness. This phenomenon is more common among organic crystals that frequently appear in triclinic, monoclinic, orthorhombic, or tetragonal space groups. Consequently, the chiral surfaces of such crystals have been shown to display enantiomeric recognition for molecules of the environment, a process that has been instrumental in the conversion of achiral host crystals into enantiomorphous solid-solutions, for a successful performance of “absolute” asymmetric transformations and for the control of crystal polymorphism. Mixed crystals of reduced symmetry display properties such as second harmonic generation or pyroelectricity. On the other hand, achiral faces delineate metals, which crystallize in cubic space-groups of high symmetry. However, by slicing such crystals in particular directions, they might express homochiral high Miller index faces that contain homochiral kink sites, which have been successfully exploited in electrochemical separations of sugars and for the resolution of enantiomers by enantioselective desorption. Representative examples of each class of materials are described.

[1]  D. Hochberg,et al.  Chiral symmetry breaking via crystallization of the glycine and α-amino acid system: a mathematical model. , 2011, Physical chemistry chemical physics : PCCP.

[2]  Tsuneomi Kawasaki,et al.  Enantioselective C–C Bond Formation as a Result of the Oriented Prochirality of an Achiral Aldehyde at the Single-Crystal Face upon Treatment with a Dialkyl Zinc Vapor , 2011, Angewandte Chemie.

[3]  I. Weissbuch,et al.  Crystalline architectures as templates of relevance to the origins of homochirality. , 2011, Chemical reviews.

[4]  R. Hazen,et al.  Mineral surfaces, geochemical complexities, and the origins of life. , 2010, Cold Spring Harbor perspectives in biology.

[5]  Tsuneomi Kawasaki,et al.  Generation of Absolute Controlled Crystal Chirality by the Removal of Crystal Water from Achiral Crystal of Nucleobase Cytosine , 2010, Journal of the American Chemical Society.

[6]  A. Gellman Chiral surfaces: accomplishments and challenges. , 2010, ACS nano.

[7]  P. Fischer,et al.  Absolute asymmetric reduction based on the relative orientation of achiral reactants. , 2009, Angewandte Chemie.

[8]  R. Raval Nanoscale Exploration of Molecular and Supramolecular Chirality at Metal Surfaces under Ultrahigh‐Vacuum Conditions , 2009 .

[9]  S. D. Feyter,et al.  Expression of Chirality in Physisorbed Monolayers Observed by Scanning Tunneling Microscopy , 2009 .

[10]  G. Bolbach,et al.  Racemic beta-sheets as templates of relevance to the origin of homochirality of peptides: lessons from crystal chemistry. , 2009, Accounts of chemical research.

[11]  D. Sholl,et al.  The Real Structure of Naturally Chiral Cu{643} , 2008 .

[12]  K. Ernst Amplification of chirality in two-dimensional molecular lattices , 2008 .

[13]  C. Gervais,et al.  Impact of Surface Symmetry on Growth-Induced Properties , 2007 .

[14]  G. Bolbach,et al.  Homochiral oligopeptides via surface recognition and enantiomeric cross impediment in the polymerization of racemic phenylalanine N-carboxyanhydride crystals suspended in water. , 2007, Chirality.

[15]  P. Salvador,et al.  Chiral surfaces and metal/ceramic heteroepitaxy in the Pt/SrTiO3(621) system , 2007 .

[16]  I. Weissbuch,et al.  Control of Crystal Polymorphism by Tuning the Structure of Auxiliary Molecules as Nucleation Inhibitors. The β-Polymorph of Glycine Grown in Aqueous Solutions , 2005 .

[17]  T. Wüst,et al.  Growth-induced polarity formation in solid solutions of organic molecules: Markov mean-field model and Monte Carlo simulations. , 2005, The Journal of chemical physics.

[18]  G. Bolbach,et al.  Homochiral oligopeptides generated by induced "mirror symmetry breaking" lattice-controlled polymerizations in racemic crystals of phenylalanine N-carboxyanhydride. , 2005, Chemistry.

[19]  P. Poizot,et al.  Enantiospecific electrodeposition of a chiral catalyst , 2003, Nature.

[20]  D. Sholl,et al.  Chiral selection on inorganic crystalline surfaces , 2003, Nature materials.

[21]  I. Weissbuch,et al.  Toward Stereochemical Control, Monitoring, and Understanding of Crystal Nucleation , 2003 .

[22]  E. Herrero,et al.  The influence of anions and kink structure on the enantioselective electro-oxidation of glucose. , 2002, Faraday discussions.

[23]  Pedro Cintas Die Chiralität lebender Systeme: Hilfe von Kristallen und Oligopeptiden , 2002 .

[24]  P. Cintas Chirality of living systems: a helping hand from crystals and oligopeptides. , 2002, Angewandte Chemie.

[25]  A. Gellman,et al.  Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. , 2002, Journal of the American Chemical Society.

[26]  A. Wierzbicki,et al.  Formation of chiral morphologies through selective binding of amino acids to calcite surface steps , 2001, Nature.

[27]  David S. Sholl,et al.  Naturally Chiral Metal Surfaces as Enantiospecific Adsorbents , 2001 .

[28]  G. Attard Electrochemical Studies of Enantioselectivity at Chiral Metal Surfaces , 2001 .

[29]  X. Zhao Fabricating Homochiral Facets on Cu(001) with l-lysine , 2000 .

[30]  D. Sholl Adsorption of Chiral Hydrocarbons on Chiral Platinum Surfaces , 1998 .

[31]  M. Peterson,et al.  Effect of Habit Modification on Optical and X-ray Structures of Sodium Halate Mixed Crystals: The Etiology of Anomalous Double Refraction , 1997 .

[32]  C. Mcfadden,et al.  Adsorption of Chiral Alcohols on “Chiral” Metal Surfaces , 1996 .

[33]  Y. Ohashi,et al.  POLYMERIZATION OF N-CARBOXY ANHYDRIDES OF L- AND DL-VALINE, AND L- AND DL-PHENYLALANINE IN THE SOLID STATE , 1996 .

[34]  R. Popovitz‐Biro,et al.  Understanding and control of nucleation, growth, habit, dissolution and structure of two‐ and three‐dimensional crystals using `tailor‐made' auxiliaries , 1995 .

[35]  I. Weissbuch,et al.  Tailor-made and charge-transfer auxiliaries for the control of the crystal polymorphism of glycine , 1994 .

[36]  M. Peterson,et al.  Reevaluating structures for mixed crystals of simple isomorphous salts: sodium chlorate bromate (NaClxBr1-xO3) , 1993 .

[37]  R. D. Cody,et al.  Chiral habit modifications of gypsum from epitaxial-like adsorption of stereospecific growth inhibitors , 1991 .

[38]  L. Addadi,et al.  Oriented crystallization as a tool for detecting ordered aggregates of water-soluble hydrophobic .alpha.-amino acids at the air-solution interface , 1990 .

[39]  L. Addadi,et al.  Control of polymorphism by ‘tailor‐made’ polymeric crystallization auxiliaries. Preferential precipitation of a metastable polar form for second harmonic generation , 1990 .

[40]  J. McBride Symmetry Reduction in Solid Solutions: A New Method for Materials Design , 1989 .

[41]  J. McBride,et al.  Using Crystal Birefringence to Study Molecular Recognition , 1989 .

[42]  J. Mcbride,et al.  Doppelbrechungsstudien zur molekularen Erkennung bei der Kristallisation langkettiger Diacylperoxide , 1989 .

[43]  L. Addadi,et al.  Absolute asymmetric photochemistry using centrosymmetric single crystals: the host/guest system (E)-cinnamamide/(E)-cinnamic acid , 1989 .

[44]  G. Meredith,et al.  Centrosymmetric crystals as host matrices for second-order optical nonlinear effects , 1989 .

[45]  H. Allcock,et al.  Radiation crosslinking of poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene]: effect on solid-state ionic conductivity , 1989 .

[46]  L. Shimon,et al.  The Structure and Symmetry of Crystalline Solid Solutions: A General Revision , 1988, Science.

[47]  L. Addadi,et al.  A Link Between Macroscopic Phenomena and Molecular Chirality: Crystals as Probes for the Direct Assignment of Absolute Configuration of Chiral Molecules , 1987 .

[48]  B. D. Bothwell,et al.  Polymorphism and nonlinear optical activity in organic crystals , 1986 .

[49]  B. Muñoz,et al.  Synthesis of chiral molecules from non-chiral crystals by controlled reaction at a single surface , 1986 .

[50]  Linda J. W. Shimon,et al.  Wachstum und Auflösung Organischer Kristalle in Gegenwart von Additiven - ein Beitrag zu Stereochemie und Materialwissenschaften† , 1985 .

[51]  L. Addadi,et al.  Growth and Dissolution of Organic Crystals with “Tailor‐Made” Inhibitors—Implications in Stereochemistry and Materials Science , 1985 .

[52]  M. Lahav,et al.  Stereochemical Discrimination at Organic Crystal Surfaces 2: The Effect of the Molecular Structure and Conformation of Dipeptides Additives on the Morphology of Glyclyglycine Crystals , 1985 .

[53]  L. Addadi,et al.  Stereochemical Discrimination at Organic Crystal Surfaces 1: The Systems Serine/Threonine and Serine/Allothreonine , 1985 .

[54]  L. Addadi,et al.  Spontaneous generation and amplification of optical activity in α-amino acids by enantioselective occlusion into centrosymmetric crystals of glycine , 1984, Nature.

[55]  L. Addadi,et al.  Centrosymmetric crystals for the direct assignment of the absolute configuration of chiral molecules. Application to the .alpha.-amino acids by their effect on glycine crystals , 1983 .

[56]  L. Addadi,et al.  Use of "enantiopolar" directions in centrosymmetric crystals for direct assignment of absolute configuration of chiral molecules: application to the system serine/threonine , 1982 .

[57]  L. Addadi,et al.  Resolution of conglomerates by stereoselective habit modifications , 1982, Nature.

[58]  H. Holland,et al.  A new approach to the synthesis of chiral molecules from nonchiral reactants. Asymmetric induction by reaction at one surface of a single (nonchiral) crystal , 1982 .

[59]  D. Rabinovich,et al.  Asymmetric synthesis via reactions in chiral crystals , 1979 .

[60]  R B Corey,et al.  Two Rippled-Sheet Configurations of Polypeptide Chains, and a Note about the Pleated Sheets. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Borrmann Neuere Arbeitsmethoden zum Waschen und Destillieren von Flüssigkeiten , 1915 .