The kissing number in four dimensions

The kissing number problem asks for the maximal number k(n) of equal size nonoverlapping spheres in n-dimensional space that can touch another sphere of the same size. This problem in dimension three was the subject of a famous discussion between Isaac Newton and David Gregory in 1694. In three dimensions the problem was finally solved only in 1953 by Schutte and van der Waerden. In this paper we present a solution of a long-standing problem about the kissing number in four dimensions. Namely, the equality fc(4) = 24 is proved. The proof is based on a modification of Delsarte's method.

[1]  Bill Broyles Notes , 1907, The Classical Review.

[2]  I. J. Schoenberg Positive definite functions on spheres , 1942 .

[3]  B. L. Waerden,et al.  Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz? , 1951 .

[4]  B. L. Waerden,et al.  Das Problem der dreizehn Kugeln , 1952 .

[5]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[6]  V. Klee,et al.  Helly's theorem and its relatives , 1963 .

[7]  A. Wyner Capabilities of bounded discrepancy decoding , 1965 .

[8]  P. Delsarte Bounds for unrestricted codes, by linear programming , 1972 .

[9]  B. C. Carlson Special functions of applied mathematics , 1977 .

[10]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[11]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[12]  James E. Goehring,et al.  THE ENGLISH TRANSLATION , 1986 .

[13]  Ludwig Danzer,et al.  Finite point-sets on S2 with minimum distance as large as possible , 1986, Discret. Math..

[14]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[15]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[16]  T. Hales The status of the kepler conjecture , 1994 .

[17]  Danyo Danev,et al.  Upper bounds on the minimum distance of spherical codes , 1996, IEEE Trans. Inf. Theory.

[18]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[19]  Martin Aigner,et al.  The problem of the thirteen spheres , 1998 .

[20]  V. Levenshtein Universal bounds for codes and designs, in Handbookof Coding Theory , 1998 .

[21]  V. Arestov,et al.  On Kissing Number in Four Dimensions , 1999 .

[22]  V. Arestov,et al.  Estimates of the maximal value of angular code distance for 24 and 25 points on the unit sphere in ℝ4 , 2000 .

[23]  W. Hsiang Least Action Principle of Crystal Formation of Dense Packing Type and Kepler's Conjecture , 2002 .

[24]  William H. Press,et al.  Numerical recipes in C , 2002 .

[25]  K. Böröczky The Newton-Gregory Problem Revisited , 2003 .

[26]  O. Musin The problem of the twenty-five spheres , 2003 .

[27]  S. Griffis EDITOR , 1997, Journal of Navigation.

[28]  Florian Pfender,et al.  Kissing numbers, sphere packings, and some unexpected proofs , 2004 .

[29]  Kurt M. Anstreicher The Thirteen Spheres: A New Proof , 2004, Discret. Comput. Geom..

[30]  gesteIlten Untersuehungen Bemerkung der Redaction , 2005, Albrecht von Graefes Archiv für Ophthalmologie.