Miniature spectrometer and beam splitter for an optical coherence tomography on a silicon chip.

Optical coherence tomography (OCT) has enabled clinical applications that revolutionized in vivo medical diagnostics. Nevertheless, its current limitations owing to cost, size, complexity, and the need for accurate alignment must be overcome by radically novel approaches. Exploiting integrated optics, we assemble the central components of a spectral-domain OCT system on a silicon chip. The spectrometer comprises an arrayed-waveguide grating with 136-nm free spectral range and 0.21-nm wavelength resolution. The beam splitter is realized by a non-uniform adiabatic coupler with its 3-dB splitting ratio being nearly constant over 150 nm. With this device whose overall volume is 0.36 cm(3) we demonstrate high-quality in vivo imaging in human skin with 1.4-mm penetration depth, 7.5-µm axial resolution, and a signal-to-noise ratio of 74 dB. Considering the reasonable performance of this early OCT on-a-chip system and the anticipated improvements in this technology, a completely different range of devices and new fields of applications may become feasible.

[1]  A. Driessen,et al.  Silicon oxynitride based photonics , 2008, 2008 10th Anniversary International Conference on Transparent Optical Networks.

[2]  Wim Bogaerts,et al.  Integrated photonic circuit in silicon on insulator for Fourier domain optical coherence tomography , 2010, BiOS.

[3]  Mk Meint Smit,et al.  PHASAR-based WDM-devices: Principles, design and applications , 1996 .

[4]  Jeroen Kalkman,et al.  Spectral domain optical coherence tomography imaging with an integrated optics spectrometer. , 2011, Optics letters.

[5]  Mk Meint Smit,et al.  Integrated Tunable Quantum Dot Laser for Optical Coherence Tomography in the 1.7?m Wavelength Region , 2011 .

[6]  Grégory Pandraud,et al.  Miniature 10 kHz thermo-optic delay line in silicon. , 2010, Optics letters.

[7]  E. Voges,et al.  Integrated optical sensor in glass for optical coherence tomography (OCT) , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Sailing He,et al.  InAs/InP(100) quantum dot waveguide photodetectors for swept-source optical coherence tomography around 1.7 µm. , 2012, Optics express.

[9]  A. Rollins,et al.  Analytical model of spectrometer-based two-beam spectral interferometry. , 2007, Applied optics.

[10]  Joseph A. Izatt,et al.  Theory of Optical Coherence Tomography , 2008 .

[11]  M. Smit New focusing and dispersive planar component based on an optical phased array , 1988 .

[12]  Kohji Ohbayashi,et al.  Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second , 2012, Biomedical optics express.

[13]  C. M. Sparrow On Spectroscopic Resolving Power , 1916 .

[14]  K. Okamoto,et al.  Very low insertion loss arrayed-waveguide grating with vertically tapered waveguides , 2000, IEEE Photonics Technology Letters.

[15]  Adolf Friedrich Fercher,et al.  Optical coherence tomography - development, principles, applications. , 2010, Zeitschrift fur medizinische Physik.

[16]  W. H. Louisell,et al.  Analysis of the single tapered mode coupler , 1955 .

[17]  刘文,et al.  Arrayed waveguide grating wavelength division multiplexer , 2011 .

[18]  A. Leinse,et al.  Integrated-optics-based swept-source optical coherence tomography. , 2012, Optics letters.

[19]  M. Pollnau,et al.  Polarization-Independent Enhanced-Resolution Arrayed-Waveguide Grating Used in Spectral-Domain Optical Low-Coherence Reflectometry , 2012, IEEE Photonics Technology Letters.

[20]  J. Izatt,et al.  2 Theory of Optical Coherence Tomography , 2014 .

[21]  Boris Povazay,et al.  Multispectral in vivo three-dimensional optical coherence tomography of human skin. , 2010, Journal of biomedical optics.

[22]  M. Pollnau,et al.  Toward Spectral-Domain Optical Coherence Tomography on a Chip , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  W. Drexler,et al.  Dispersion encoded full range frequency domain optical coherence tomography. , 2009, Optics express.

[24]  K. Ohbayashi,et al.  Fourier domain optical coherence tomography using optical demultiplexers imaging at 60,000,000 lines/s. , 2008, Optics letters.

[25]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[26]  B. Offrein,et al.  A very short planar silica spot-size converter using a nonperiodic segmented waveguide , 1998 .

[27]  Kazumasa Takada,et al.  320-channel multiplexer consisting of 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs , 1999 .

[28]  B. I. Akca,et al.  Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[29]  Elaine Fuchs,et al.  Getting under the skin of epidermal morphogenesis , 2002, Nature Reviews Genetics.

[30]  Yuqing Jiao,et al.  Integrated Tunable Quantum-Dot Laser for Optical Coherence Tomography in the 1.7 $\mu{\rm m}$ Wavelength Region , 2012, IEEE Journal of Quantum Electronics.

[31]  O. Mitomi,et al.  Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling , 1994 .