Chebyshev--Legendre Super Spectral Viscosity Method for Nonlinear Conservation Laws

In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order $D^s=(\sqrt{1-x^2} \opx)^s $ is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev--Galerkin, Chebyshev collocation, or Legendre--Galerkin approximations to nonlinear conservation laws, which is proved by compensated compactness arguments.

[1]  B. Muckenhoupt,et al.  Mean convergence of Hermite and Laguerre series. II , 1970 .

[2]  Yvon Maday,et al.  Polynomial interpolation results in Sobolev spaces , 1992 .

[3]  Wai Sun Don Numerical study of pseudospectral methods in shock wave applications , 1994 .

[4]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[5]  Josip Pečarić,et al.  Inequalities Involving Functions and Their Integrals and Derivatives , 1991 .

[6]  Gui-Qiang G. Chen,et al.  Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .

[7]  Wei Cai,et al.  On one-sided filters for spectral Fourier approximations of discontinuous functions , 1992 .

[8]  Daniele,et al.  CONVERGENCE RESULTS FOR PSEUDOSPECTRAL APPROXIMATIONS OF HYPERBOLIC SYSTEMS BY A PENALTY TYPE BOUNDARY TREATMENT , 1991 .

[9]  B. Muckenhoupt,et al.  MEAN CONVERGENCE OF JACOBI SERIES , 1969 .

[10]  Chi-Wang Shu,et al.  A note on the accuracy of spectral method applied to nonlinear conservation laws , 1995 .

[11]  David Gottlieb,et al.  The Chebyshev-Legendre method: implementing Legendre methods on Chebyshev points , 1994 .

[12]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[13]  Eitan Tadmor,et al.  Spectral Methods for Discontinuous Problems , 1985 .

[14]  Guo Ben-yu,et al.  The Chebyshev spectral method for Burgers-like equations , 1988 .

[15]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[16]  Chi-Wang Shu,et al.  On the Gibbs phenomenon V: recovering exponential accuracy from collocation point values of a piecewise analytic function , 1995 .

[17]  Eitan Tadmor,et al.  Shock capturing by the spectral viscosity method , 1990 .

[18]  C. Bennett,et al.  Interpolation of operators , 1987 .

[19]  E. Tadmor,et al.  Analysis of the spectral vanishing viscosity method for periodic conservation laws , 1989 .

[20]  Bradley K. Alpert,et al.  A Fast Algorithm for the Evaluation of Legendre Expansions , 1991, SIAM J. Sci. Comput..

[21]  Chi-Wang Shu,et al.  On the Gibbs phenomenon IV: recovering exponential accuracy in a subinterval from a Gegenbauer partial sum of a piecewise analytic function , 1994 .

[22]  Eitan Tadmor,et al.  Recovering Pointwise Values of Discontinuous Data within Spectral Accuracy , 1985 .

[23]  Alex Solomonoff,et al.  On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function , 1992 .

[24]  D. Gottlieb,et al.  A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations , 1988 .

[25]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[26]  Luis G. Reyna,et al.  L2 estimates for Chebyshev collocation , 1988, J. Sci. Comput..

[27]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .