Reduced Basis A Posteriori Error Bounds for the Stokes Equations in Parametrized Domains: A Penalty Approach

We present reduced basis approximations and associated rigorous a posteriori error bounds for the Stokes equations in parametrized domains. The method is built upon a penalty formulation for saddle point problems and provides error bounds admitting affine geometric variations with relative ease. Essential features are: i) dimension reduction; ii) stable, good approximation of the pressure; iii) optimal and numerically stable approximations identified by an efficient Greedy sampling procedure; iv) certainty, through rigorous a posteriori bounds for the error in the reduced basis approximation; and v) efficiency, through an offline‐online computational strategy. The method is applied to a flow problem in a two‐dimensional channel with a parametrized rectangular obstacle. Numerical results show that the reduced basis approximation converges rapidly, the effectivities associated with the (inexpensive) rigorous a posteriori error bounds remain good even for reasonably small values of the penalty parameter.

[1]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[2]  N. Nguyen,et al.  REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS , 2011 .

[3]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[4]  Bartosz A Grzybowski,et al.  Microfluidic mixers: from microfabricated to self-assembling devices , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .

[6]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[7]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[8]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[9]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[10]  T. A. Porsching,et al.  Estimation of the error in the reduced basis method solution of nonlinear equations , 1985 .

[11]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[12]  Gianluigi Rozza,et al.  Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity , 2009, J. Comput. Phys..

[13]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[14]  Nguyen Ngoc Cuong,et al.  Certified Real-Time Solution of Parametrized Partial Differential Equations , 2005 .

[15]  Yvon Maday,et al.  A reduced-basis element method , 2002 .

[16]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[17]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[18]  Gianluigi Rozza,et al.  Reduced basis methods for Stokes equations in domains with non-affine parameter dependence , 2009 .

[19]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[20]  Einar M. Rønquist,et al.  Reduced-basis modeling of turbulent plane channel flow , 2006 .

[21]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[22]  Gianluigi Rozza,et al.  Real time reduced basis techniques for arterial bypass geometries , 2005 .

[23]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[24]  Anthony T. Patera,et al.  10. Certified Rapid Solution of Partial Differential Equations for Real-Time Parameter Estimation and Optimization , 2007 .

[25]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[26]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[27]  J. N. Reddy,et al.  On penalty function methods in the finite‐element analysis of flow problems , 1982 .

[28]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[29]  Juan C. Heinrich,et al.  The penalty method for the Navier-Stokes equations , 1995 .

[30]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[31]  Yvon Maday,et al.  A reduced basis element method for the steady stokes problem , 2006 .

[32]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[33]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[34]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..

[35]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[36]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[37]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[38]  K. ITOy REDUCED BASIS METHOD FOR OPTIMAL CONTROL OF UNSTEADY VISCOUS FLOWS , 2006 .

[39]  S. Ravindran,et al.  A Reduced Basis Method for Control Problems Governed by PDEs , 1998 .

[40]  Graham F. Carey,et al.  Penalty approximation of stokes flow , 1982 .

[41]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[42]  Gianluigi Rozza,et al.  On optimization, control and shape design of an arterial bypass , 2005 .

[43]  J. Tinsley Oden,et al.  PENALTY-FINITE ELEMENT METHODS FOR THE ANALYSIS OF STOKESIAN FLOWS* , 1982 .

[44]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[45]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[46]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[47]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[48]  S. Ravindran Control of flow separation over a forward-facing step by model reduction , 2002 .

[49]  Max Gunzburger,et al.  POD and CVT-based reduced-order modeling of Navier-Stokes flows , 2006 .