Tracking Lagrangian trajectories in position–velocity space

Lagrangian particle-tracking algorithms are susceptible to intermittent loss of particle images on the sensors. The measured trajectories are often interrupted into short segments and the long-time Lagrangian statistics are difficult to obtain. We present an algorithm to connect the segments of Lagrangian trajectories from common particle-tracking algorithms. Our algorithm tracks trajectory segments in the six-dimensional position and velocity space. We describe the approach to determine parameters in the algorithm and demonstrate the validity of the algorithm with data from numerical simulations and the improvement of long-time Lagrangian statistics on experimental data. The algorithm has important applications in measurements with high particle seeding density and in obtaining multi-particle Lagrangian statistics.

[1]  B. Sawford,et al.  Turbulent relative dispersion , 2001 .

[2]  P. N. Rosielle,et al.  Design of a set-up for high-accuracy 3D PTV measurements in turbulent pipe flow , 2006 .

[3]  Wolfgang Kinzelbach,et al.  Lagrangian measurement of vorticity dynamics in turbulent flow , 2005, Journal of Fluid Mechanics.

[4]  S. Pope,et al.  Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence , 2007, Journal of Fluid Mechanics.

[5]  Eberhard Bodenschatz,et al.  A quantitative study of three-dimensional Lagrangian particle tracking algorithms , 2006 .

[6]  S. Ott,et al.  Lagrangian multi-particle statistics , 2007 .

[7]  M. Vergassola,et al.  Particles and fields in fluid turbulence , 2001, cond-mat/0105199.

[8]  Eberhard Bodenschatz,et al.  Lagrangian acceleration measurements at large Reynolds numbers , 1998 .

[9]  Eberhard Bodenschatz,et al.  Three-dimensional structure of the Lagrangian acceleration in turbulent flows. , 2004, Physical review letters.

[10]  Haitao Xu,et al.  Evolution of geometric structures in intense turbulence , 2007, 0708.3955.

[11]  S. Monismith,et al.  A hybrid digital particle tracking velocimetry technique , 1997 .

[12]  Michael Chertkov,et al.  Lagrangian tetrad dynamics and the phenomenology of turbulence , 1999, chao-dyn/9905027.

[13]  G. Voth,et al.  Measurement of particle accelerations in fully developed turbulence , 2001, Journal of Fluid Mechanics.

[14]  Haitao Xu,et al.  Small-scale anisotropy in Lagrangian turbulence , 2006 .

[15]  Eberhard Bodenschatz,et al.  High order Lagrangian velocity statistics in turbulence. , 2006, Physical review letters.

[16]  Robert S. Brodkey,et al.  A stereoscopic visual study of coherent structures in turbulent shear flow , 1978, Journal of Fluid Mechanics.

[17]  S. Pope,et al.  Lagrangian statistics from direct numerical simulations of isotropic turbulence , 1989, Journal of Fluid Mechanics.

[18]  Yann Guezennec,et al.  Algorithms for fully automated three-dimensional particle tracking velocimetry , 1994 .

[19]  F. Toschi,et al.  Particle trapping in three-dimensional fully developed turbulence , 2005 .

[20]  Ray W.K. Allen,et al.  Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV , 2006 .

[21]  G. Batchelor The application of the similarity theory of turbulence to atmospheric diffusion , 1950 .

[22]  Yuichi Murai,et al.  Particle tracking velocimetry applied to estimate the pressure field around a Savonius turbine , 2007 .

[23]  N. Malik,et al.  Particle tracking velocimetry in three-dimensional flows , 1993 .

[24]  Measurement of Lagrangian velocity in fully developed turbulence. , 2001, Physical review letters.

[25]  S. Ott,et al.  An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow , 2000, Journal of Fluid Mechanics.

[26]  Eberhard Bodenschatz,et al.  Experimental Lagrangian acceleration probability density function measurement , 2004 .

[27]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[28]  Roberto Racca,et al.  A method for automatic particle tracking in a three-dimensional flow field , 1988 .

[29]  G. Voth,et al.  Fluid particle accelerations in fully developed turbulence , 2000, Nature.

[30]  Haitao Xu,et al.  The Role of Pair Dispersion in Turbulent Flow , 2006, Science.

[31]  Jeffrey S. Guasto,et al.  Statistical particle tracking velocimetry using molecular and quantum dot tracer particles , 2006 .

[32]  Armin Gruen,et al.  Particle tracking velocimetry in three-dimensional flows , 1993, Experiments in Fluids.

[33]  L. Richardson,et al.  Atmospheric Diffusion Shown on a Distance-Neighbour Graph , 1926 .

[34]  S. Ott,et al.  Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  J. Sinclair,et al.  Go with the Flow , 2000 .

[36]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[37]  T. Dracos,et al.  3D PTV and its application on Lagrangian motion , 1997 .

[38]  F Toschi,et al.  Multifractal statistics of Lagrangian velocity and acceleration in turbulence. , 2004, Physical review letters.