Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode

Understanding the oxygen reduction reaction at fuel cell cathodes requires information on adsorbed oxygenated species. Sanchez Casalongue et al. report in situ identification of oxygenated intermediates at cathodes and establish a correlation between the cathode potential and the surface speciation.

[1]  J. Greeley,et al.  The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. , 2009, Nature chemistry.

[2]  J. Erlebacher,et al.  Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. , 2010, Nature materials.

[3]  G. Zimbitas,et al.  Wetting of mixed OHH(2)O layers on Pt(111). , 2008, The Journal of chemical physics.

[4]  M. Odelius,et al.  Structure and bonding of the water-hydroxyl mixed phase on Pt(111) , 2007 .

[5]  A. Russell,et al.  X-ray absorption spectroscopy of low temperature fuel cell catalysts. , 2004, Chemical Reviews.

[6]  K. Domen,et al.  Gas phase photocatalytic water splitting with Rh2−yCryO3/GaN:ZnO in μ-reactors , 2011 .

[7]  J. Nørskov,et al.  Balance of nanostructure and bimetallic interactions in Pt model fuel cell catalysts: in situ XAS and DFT study. , 2012, Journal of the American Chemical Society.

[8]  T. Okada,et al.  Study of Pt Electrode/Nafion Ionomer Interface in HClO4 by In Situ Surface-Enhanced FTIR Spectroscopy , 2006 .

[9]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[10]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[11]  Venkatasubramanian Viswanathan,et al.  Universality in Oxygen Reduction Electrocatalysis on Metal Surfaces , 2012 .

[12]  J. Nørskov,et al.  Simulating Linear Sweep Voltammetry from First-Principles: Application to Electrochemical Oxidation of Water on Pt(111) and Pt3Ni(111) , 2012 .

[13]  D. Tryk,et al.  In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. , 2010, Physical chemistry chemical physics : PCCP.

[14]  M. Odelius,et al.  Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces , 2010 .

[15]  M. Watanabe,et al.  Structural effects on the surface oxidation processes at Pt single-crystal electrodes studied by X-ray photoelectron spectroscopy , 2011 .

[16]  M. Salmeron Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology , 2008 .

[17]  H. Ogasawara,et al.  Ambient-pressure photoelectron spectroscopy for heterogeneous catalysis and electrochemistry , 2013 .

[18]  H. Ogasawara,et al.  The role of substrate electrons in the wetting of a metal surface. , 2010, The Journal of chemical physics.

[19]  Aya Hitotsuyanagi,et al.  Structural effects on the activity for the oxygen reduction reaction on n(1 1 1)–(1 0 0) series of Pt: correlation with the oxide film formation , 2012 .

[20]  D. F. Ogletree,et al.  Methanol Oxidation on a Copper Catalyst Investigated Using in Situ X-ray Photoelectron Spectroscopy† , 2004 .

[21]  K. Kinoshita,et al.  Particle Size Effects for Oxygen Reduction on Highly Dispersed Platinum in Acid Electrolytes , 1990 .

[22]  Ib Chorkendorff,et al.  The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. , 2012, Angewandte Chemie.

[23]  V. Stamenkovic,et al.  Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide. , 2010, Nature chemistry.

[24]  Ib Chorkendorff,et al.  The Pt(111)/electrolyte interface under oxygen reduction reaction conditions: an electrochemical impedance spectroscopy study. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[25]  Zahid Hussain,et al.  Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. , 2010, Nature materials.

[26]  Junliang Zhang,et al.  Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. , 2005, Journal of the American Chemical Society.

[27]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[28]  M. Larsson,et al.  X-ray photoelectron, Auger electron and ion fragment spectra of O2 and potential curves of O22+ , 1990 .

[29]  E. Herrero,et al.  On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media , 2004 .

[30]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[31]  P. Ross,et al.  Surface science studies of model fuel cell electrocatalysts , 2002 .

[32]  M. Watanabe,et al.  Identification and quantification of oxygen species adsorbed on Pt(111) single-crystal and polycrystalline Pt electrodes by photoelectron spectroscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .