GRACE, time-varying gravity, Earth system dynamics and climate change

Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

[1]  I. Sasgen,et al.  Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates , 2013 .

[2]  Juliette Legrand,et al.  Assessing the precision in loading estimates by geodetic techniques in Southern Europe , 2013 .

[3]  Nasa A strategy for Earth science from space in the 1980s. Part 1: Solid earth and oceans , 2013 .

[4]  J. Fasullo,et al.  Australia's unique influence on global sea level in 2010–2011 , 2013 .

[5]  Ingo Sasgen,et al.  Limits in detecting acceleration of ice sheet mass loss due to climate variability , 2013 .

[6]  D. Chambers,et al.  Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation , 2013 .

[7]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[8]  Umberto Riccardi,et al.  The measurement of surface gravity , 2013, Reports on progress in physics. Physical Society.

[9]  B. Vermeersen,et al.  Long‐Term Rotation Instabilities of the Earth: a Reanalysis , 2013 .

[10]  Bert Wouters,et al.  Irreversible mass loss of Canadian Arctic Archipelago glaciers , 2013 .

[11]  Shin-Chan Han,et al.  Source parameter inversion for recent great earthquakes from a decade‐long observation of global gravity fields , 2013 .

[12]  Allan Aasbjerg Nielsen,et al.  Acceleration of the Greenland ice sheet mass loss as observed by GRACE: Confidence and sensitivity , 2013 .

[13]  R. Sabadini,et al.  Gravitational seismology retrieving Centroid‐Moment‐Tensor solution of the 2011 Tohoku earthquake , 2013 .

[14]  J. Orcutt Earth System Monitoring , 2013 .

[15]  Srinivas Bettadpur,et al.  Gravity Recovery and Climate Experiment (GRACE): Detection of Ice Mass Loss, Terrestrial Mass Changes, and Ocean Mass Gains , 2013 .

[16]  S. O’Neel,et al.  Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers , 2013, Journal of Glaciology.

[17]  Guillaume Ramillien,et al.  Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space , 2013, Surveys in Geophysics.

[18]  Longwei Xiang,et al.  Increased water storage in North America and Scandinavia from GRACE gravity data , 2012, Nature Geoscience.

[19]  Ayelen Pereira,et al.  Annual and seasonal water storage changes detected from GRACE data in the La Plata Basin , 2012 .

[20]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[21]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[22]  Xavier Fettweis,et al.  Evidence and analysis of 2012 Greenland records from spaceborne observations, a regional climate model and reanalysis data , 2012 .

[23]  Matt A. King,et al.  Lower satellite-gravimetry estimates of Antarctic sea-level contribution , 2012, Nature.

[24]  F. Simons,et al.  Mapping Greenland’s mass loss in space and time , 2012, Proceedings of the National Academy of Sciences.

[25]  Comment on “Ocean mass from GRACE and glacial isostatic adjustment” by D. P. Chambers et al. , 2012 .

[26]  Graeme L. Stephens,et al.  Snowfall‐driven mass change on the East Antarctic ice sheet , 2012 .

[27]  M. Tamisiea,et al.  Reply to comment by W. R. Peltier et al. on “Ocean mass from GRACE and glacial isostatic adjustment” , 2012 .

[28]  R. Steven Nerem,et al.  The 2011 La Niña: So strong, the oceans fell , 2012 .

[29]  Don P. Chambers,et al.  Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean , 2012 .

[30]  Matthew E. Pritchard,et al.  Ice loss from the Southern Patagonian Ice Field, South America, between 2000 and 2012 , 2012 .

[31]  Ingo Sasgen,et al.  Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland , 2012 .

[32]  Matt A. King,et al.  A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift rates , 2012 .

[33]  B. Scanlon,et al.  Impact of water withdrawals from groundwater and surface water on continental water storage variations , 2012 .

[34]  R. Nerem,et al.  The influence of ENSO on global terrestrial water storage using GRACE , 2012 .

[35]  W. van der Wal,et al.  Detectability of groundwater storage change within the Great Lakes Water Basin using GRACE , 2012 .

[36]  R. Houborg,et al.  Drought indicators based on model‐assimilated Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage observations , 2012 .

[37]  R. Koster,et al.  Assimilation of GRACE terrestrial water storage into a land surface model: Evaluation and potential value for drought monitoring in western and central Europe , 2012 .

[38]  R. Sabadini,et al.  A source model for the great 2011 Tohoku earthquake (Mw=9.1) from inversion of GRACE gravity data , 2012 .

[39]  Chung-Yen Kuo,et al.  Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile, earthquake quantified by the inversion of GRACE observations , 2012 .

[40]  S. Griffies,et al.  Rapid barotropic sea level rise from ice sheet melting , 2012 .

[41]  Eric Rignot,et al.  Timing and origin of recent regional ice-mass loss in Greenland , 2012 .

[42]  Bert Wouters,et al.  Recent mass changes of glaciers in the Russian High Arctic , 2012 .

[43]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[44]  Wenke Sun,et al.  Geodetic observations detecting coseismic displacements and gravity changes caused by the Mw = 9.0 Tohoku‐Oki earthquake , 2012 .

[45]  H. Dobslaw,et al.  Short‐term transport variability of the Antarctic Circumpolar Current from satellite gravity observations , 2012 .

[46]  Bert Wouters,et al.  Long-term contributions of Baffin and Bylot Island Glaciers to sea level rise: an integrated approach using airborne and satellite laser altimetry, stereoscopic imagery and satellite gravimetry , 2012 .

[47]  D. Stammer,et al.  Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates , 2012 .

[48]  N. K. Pavlis,et al.  The development and evaluation of the Earth Gravitational Model 2008 (EGM2008) , 2012 .

[49]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[50]  C. Shum,et al.  Coseismic and postseismic deformation of the 2011 Tohoku‐Oki earthquake constrained by GRACE gravimetry , 2012 .

[51]  Srinivas Bettadpur,et al.  Reducing errors in the GRACE gravity solutions using regularization , 2012, Journal of Geodesy.

[52]  W. Tad Pfeffer,et al.  Recent contributions of glaciers and ice caps to sea level rise , 2012, Nature.

[53]  E. van Meijgaard,et al.  A new, high‐resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling , 2012 .

[54]  Ron Kwok,et al.  Changing Arctic Ocean freshwater pathways , 2012, Nature.

[55]  E. Meijgaard,et al.  Irreversible mass loss of Canadian Arctic Archipelago , 2012 .

[56]  Grzegorz Michalak,et al.  GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005 , 2012 .

[57]  Jürgen Kusche,et al.  Separation of global time-variable gravity signals into maximally independent components , 2012, Journal of Geodesy.

[58]  Frank G. Lemoine,et al.  Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites , 2012, Journal of Geodesy.

[59]  T. James,et al.  Absolute gravity calibration of GPS velocities and glacial isostatic adjustment in mid‐continent North America , 2011 .

[60]  Shin‐Chan Han,et al.  Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku‐Oki earthquake , 2011 .

[61]  C. K. Shum,et al.  Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry , 2011 .

[62]  Jens Schröter,et al.  Measuring ocean mass variability from satellite gravimetry , 2011 .

[63]  Peter J. Clarke,et al.  Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations , 2011 .

[64]  ENSO-correlated fluctuations in ocean bottom pressure and wind-stress curl in the North Pacific , 2011 .

[65]  Patrick Wu,et al.  Glacial isostatic adjustment in Fennoscandia-A review of data and modeling , 2011 .

[66]  R. Sabadini,et al.  GRACE gravity data help constraining seismic models of the 2004 Sumatran earthquake , 2011 .

[67]  V. Zlotnicki,et al.  Australian water mass variations from GRACE data linked to Indo-Pacific climate variability , 2011 .

[68]  D. Chambers,et al.  Evaluation of high‐frequency oceanographic signal in GRACE data: Implications for de‐aliasing , 2011 .

[69]  G. Meehl,et al.  Effect of the potential melting of the Greenland Ice Sheet on the Meridional Overturning Circulation and global climate in the future , 2011 .

[70]  M. Tamisiea,et al.  Self‐attraction and loading effects on ocean mass redistribution at monthly and longer time scales , 2011 .

[71]  Rongjiang Wang,et al.  Investigation on afterslip and steady state and transient rheology based on postseismic deformation and geoid change caused by the Sumatra 2004 earthquake , 2011 .

[72]  Wenxi Lu,et al.  Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model , 2011 .

[73]  P. Knudsen,et al.  A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model , 2011 .

[74]  Javier Tomasella,et al.  Satellite-based estimates of groundwater storage variations in large drainage basins with extensive floodplains , 2011 .

[75]  Josh K. Willis,et al.  Balancing the Sea Level Budget , 2011 .

[76]  W. Wal,et al.  Ocean contribution to co-seismic crustal deformation and geoid anomalies: Application to the 2004 December 26 Sumatra-Andaman earthquake , 2011 .

[77]  S. Swenson,et al.  Estimating signal loss in regularized GRACE gravity field solutions , 2011 .

[78]  Mohamed Sultan,et al.  Integration of GRACE (Gravity Recovery and Climate Experiment) data with traditional data sets for a better understanding of the time-dependent water partitioning in African watersheds , 2011 .

[79]  Carsten Braun,et al.  Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago , 2011, Nature.

[80]  Riccardo E. M. Riva,et al.  A benchmark study for glacial isostatic adjustment codes , 2011 .

[81]  Coseismic gravity changes of the 2011 Tohoku‐Oki earthquake from satellite gravimetry , 2011 .

[82]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[83]  Lance M. Leslie,et al.  A multirheology ice model: Formulation and application to the Greenland ice sheet , 2011 .

[84]  Peter Steigenberger,et al.  Vertical deformations from homogeneously processed GRACE and global GPS long-term series , 2011 .

[85]  Guillaume Ramillien,et al.  Water balance of the Arctic drainage system using GRACE gravimetry products , 2011 .

[86]  Axel Rülke,et al.  On-land ice loss and glacial isostatic adjustment at the drake passage: 2003-2009 , 2011 .

[87]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[88]  J. Bamber,et al.  Seasonal variations in sea level induced by continental water mass: First results from GRACE , 2011 .

[89]  Ole Baltazar Andersen,et al.  An initial estimate of the North Atlantic steady‐state geostrophic circulation from GOCE , 2011 .

[90]  Z. Martinec,et al.  Spectral-finite element approach to viscoelastic relaxation in a spherical compressible Earth: application to GIA modelling , 2011 .

[91]  F. Landerer,et al.  Terrestrial water budget of the Eurasian pan‐Arctic from GRACE satellite measurements during 2003–2009 , 2010 .

[92]  Chung-Yen Kuo,et al.  Global Sea Level Rise: Recent Progress and Challenges for the Decade to Come , 2010 .

[93]  Scott B. Luthcke,et al.  Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large‐scale mass redistribution , 2010 .

[94]  Byron D. Tapley,et al.  The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE , 2010 .

[95]  Koji Matsuo,et al.  Coseismic gravity changes of the 2010 earthquake in central Chile from satellite gravimetry , 2010 .

[96]  B. D. Tapley,et al.  Recent La Plata basin drought conditions observed by satellite gravimetry , 2010 .

[97]  John M. Melack,et al.  Seasonal water storage on the Amazon floodplain measured from satellites , 2010 .

[98]  Ingo Sasgen,et al.  Satellite gravimetry observation of Antarctic snow accumulation related to ENSO , 2010 .

[99]  R. Steven Nerem,et al.  Ocean mass from GRACE and glacial isostatic adjustment , 2010 .

[100]  Don Chambers,et al.  Analysis of seasonal ocean bottom pressure variability in the Gulf of Thailand from GRACE , 2010 .

[101]  A. Cazenave,et al.  Time-variable gravity from space and present-day mass redistribution in theEarth system , 2010 .

[102]  M. Bierkens,et al.  Global depletion of groundwater resources , 2010 .

[103]  J. Bamber,et al.  Sea‐level fingerprint of continental water and ice mass change from GRACE , 2010 .

[104]  J. Awange,et al.  Relation between GRACE-derived surface mass variations and precipitation over Australia , 2010 .

[105]  H. Steffen,et al.  Determination of the Earth's structure in Fennoscandia from GRACE and implications for the optimal post-processing of GRACE data , 2010 .

[106]  Gary T. Mitchum,et al.  Estimating Mean Sea Level Change from the TOPEX and Jason Altimeter Missions , 2010 .

[107]  S. Bettadpur,et al.  Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data , 2010 .

[108]  B. Merz,et al.  Measuring the effect of local water storage changes on in situ gravity observations: Case study of the Geodetic Observatory Wettzell, Germany , 2010 .

[109]  Michael G. Sideris,et al.  Sea levels and uplift rate from composite rheology in glacial isostatic adjustment modeling , 2010 .

[110]  M. Tamisiea,et al.  Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia , 2010 .

[111]  Fred F. Pollitz,et al.  Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake , 2010 .

[112]  J. Lemoine,et al.  Consistent patterns of Antarctic ice sheet interannual variations from ENVISAT radar altimetry and GRACE , 2010 .

[113]  J. Famiglietti,et al.  Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data , 2010 .

[114]  Qiuhong Tang,et al.  Estimating the water budget of major US river basins via remote sensing , 2010 .

[115]  Jean-François Crétaux,et al.  Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations , 2010 .

[116]  M. Bevis,et al.  Spread of ice mass loss into northwest Greenland observed by GRACE and GPS , 2010 .

[117]  Guillaume Ramillien,et al.  External geophysics, climate and environment Global land water storage change from GRACE over 2002-2009; Inference on sea level , 2010 .

[118]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[119]  Koji Matsuo,et al.  Time-variable ice loss in Asian high mountains from satellite gravimetry , 2010 .

[120]  J. Schröter,et al.  Antarctic Circumpolar Current Transport Variability in GRACE Gravity Solutions and Numerical Ocean Model Simulations , 2010 .

[121]  The Release 04 CHAMP and GRACE EIGEN Gravity Field Models , 2010 .

[122]  A. Eicker,et al.  ITG-GRACE: Global Static and Temporal Gravity Field Models from GRACE Data , 2010 .

[123]  Petra Döll,et al.  Global-scale analysis of river flow alterations due to water withdrawals and reservoirs , 2009 .

[124]  Giampiero Sindoni,et al.  Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models , 2009 .

[125]  Byron D. Tapley,et al.  Accelerated Antarctic ice loss from satellite gravity measurements , 2009 .

[126]  M. Watkins,et al.  Arctic Ocean Tides from GRACE Satellite Accelerations , 2009 .

[127]  Bob E. Schutz,et al.  Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data , 2009 .

[128]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[129]  Low-frequency exchange of mass between ocean basins , 2009 .

[130]  Ole Baltazar Andersen,et al.  DNSC08 mean sea surface and mean dynamic topography models , 2009 .

[131]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[132]  R. Ray,et al.  Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data , 2009 .

[133]  A. Eicker,et al.  Deriving daily snapshots of the Earth's gravity field from GRACE L1B data using Kalman filtering , 2009 .

[134]  V. M. Tiwari,et al.  Dwindling groundwater resources in northern India, from satellite gravity observations , 2009 .

[135]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[136]  Guillaume Ramillien,et al.  Detecting hydrologic deformation using GRACE and GPS , 2009 .

[137]  W. R. Peltier,et al.  Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment , 2009 .

[138]  A. Güntner,et al.  Calibration analysis for water storage variability of the global hydrological model WGHM , 2009 .

[139]  Bob E. Schutz,et al.  A comparison of coincident GRACE and ICESat data over Antarctica , 2009 .

[140]  Emile A. Okal,et al.  Observations of ultra-long period normal modes from the 2004 Sumatra–Andaman earthquake , 2009 .

[141]  R. Dietrich,et al.  Signal and error in mass change inferences from GRACE: the case of Antarctica , 2009 .

[142]  M. R. van den Broeke,et al.  Higher surface mass balance of the Greenland ice sheet revealed by high‐resolution climate modeling , 2009 .

[143]  Guillaume Ramillien,et al.  Basin‐scale, integrated observations of the early 21st century multiyear drought in southeast Australia , 2009 .

[144]  R. Braithwaite After six decades of monitoring glacier mass balance we still need data but it should be richer data , 2009, Annals of Glaciology.

[145]  Hyung Rae Kim,et al.  GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica , 2009 .

[146]  E. Leuliette,et al.  Closing the sea level rise budget with altimetry, Argo, and GRACE , 2009 .

[147]  Guillaume Ramillien,et al.  Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo , 2009 .

[148]  X. Liu,et al.  Global gravity field recovery from satellite-to-satellite tracking data with the acceleration approach , 2008 .

[149]  V. Zlotnicki,et al.  Subpolar ocean bottom pressure oscillation and its links to the tropical ENSO , 2008 .

[150]  J. Willis,et al.  Analysis of large-scale ocean bottom pressure variability in the North Pacific , 2008 .

[151]  Hubert H. G. Savenije,et al.  The design of an optimal filter for monthly GRACE gravity models , 2008 .

[152]  Michael G. Sideris,et al.  Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America , 2008 .

[153]  Z. Martinec,et al.  Glacial isostasy and plate motion , 2008 .

[154]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[155]  Andreas Güntner,et al.  Improvement of Global Hydrological Models Using GRACE Data , 2008 .

[156]  Characteristic precipitation patterns of El Niño / La Niña in time-variable gravity fields by GRACE , 2008 .

[157]  K. Lambeck,et al.  GRACE estimates of sea surface height anomalies in the Gulf of Carpentaria, Australia , 2008 .

[158]  M. Camp,et al.  Retrieving earthquake signature in grace gravity solutions , 2008 .

[159]  S. Yirdaw,et al.  GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie , 2008 .

[160]  J. Willis,et al.  Assessing the globally averaged sea level budget on seasonal to interannual timescales , 2008 .

[161]  William H. Farrand,et al.  Hydrothermal origin of halogens at Home Plate, Gusev Crater , 2008 .

[162]  M. Rodell,et al.  Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin , 2008 .

[163]  P. Döll,et al.  Global-scale modeling of groundwater recharge , 2008 .

[164]  Georg Dresen,et al.  Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations , 2008 .

[165]  C. K. Shum,et al.  Signals of extreme weather conditions in Central Europe in GRACE 4-D hydrological mass variations , 2008 .

[166]  Ole Baltazar Andersen,et al.  Satellite Altimetry and GrAcE Gravimetry for Studies of Annual Water Storage Variations in Bangladesh , 2008 .

[167]  Matthew Rodell,et al.  Analysis of terrestrial water storage changes from GRACE and GLDAS , 2008 .

[168]  Byron D. Tapley,et al.  Antarctic regional ice loss rates from GRACE , 2008 .

[169]  Jeffrey B. Basara,et al.  Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesonet soil moisture data , 2008 .

[170]  W. Krabill,et al.  A comparison of Greenland ice-sheet volume changes derived from altimetry measurements , 2008, Journal of Glaciology.

[171]  Frederik J. Simons,et al.  Spatiospectral localization of global geopotential fields from the Gravity Recovery and Climate Experiment (GRACE) reveals the coseismic gravity change owing to the 2004 Sumatra‐Andaman earthquake , 2008 .

[172]  D. Rowlands,et al.  Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions , 2008, Journal of Glaciology.

[173]  E. Schrama,et al.  Improved accuracy of GRACE gravity solutions through empirical orthogonal function filtering of spherical harmonics , 2007 .

[174]  Franz Barthelmes,et al.  Determination of dominant periodic components of water storage changes from GRACE and global hydrology models , 2007 .

[175]  Byron D. Tapley,et al.  Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE) , 2007 .

[176]  J. Forbes,et al.  Storm-Time Equatorial Density Enhancements Observed by CHAMP and GRACE , 2007 .

[177]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[178]  Matthias Holschneider,et al.  Coseismic and post-seismic signatures of the Sumatra 2004 December and 2005 March earthquakes in GRACE satellite gravity , 2007 .

[179]  Michael G. Sideris,et al.  Analysis of Gravity Recovery and Climate Experiment time‐variable mass redistribution signals over North America by means of principal component analysis , 2007 .

[180]  Z. Martinec,et al.  Models of Active Glacial Isostasy Roofing Warm Subduction: Case of the South Patagonian Ice Field , 2007 .

[181]  Kate Huihsuan Chen,et al.  Towards a universal rule on the recurrence interval scaling of repeating earthquakes? , 2007 .

[182]  Zong-Liang Yang,et al.  Retrieving snow mass from GRACE terrestrial water storage change with a land surface model , 2007 .

[183]  Byron D. Tapley,et al.  GRACE detects coseismic and postseismic deformation from the Sumatra‐Andaman earthquake , 2007 .

[184]  B. Scanlon,et al.  Comparison of seasonal terrestrial water storage variations from GRACE with groundwater‐level measurements from the High Plains Aquifer (USA) , 2007 .

[185]  M. Tamisiea,et al.  GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia , 2007, Science.

[186]  Y. Fukuda,et al.  Landwater variation in four major river basins of the Indochina peninsula as revealed by GRACE , 2007 .

[187]  Z. Martinec,et al.  An Estimate of Global Mean Sea-level Rise Inferred from Tide-gauge Measurements Using Glacial-isostatic Models Consistent with the Relative Sea-level Record , 2007 .

[188]  On Postglacial Sea Level , 2007 .

[189]  Z. Martinec Propagator-matrix Technique for the Viscoelastic Response of a Multi-layered Sphere to Surface Toroidal Traction , 2007 .

[190]  Matthew Rodell,et al.  Attenuation effect on seasonal basin-scale water storage changes from GRACE time-variable gravity , 2007 .

[191]  R. Kwok,et al.  Recent trends in Arctic Ocean mass distribution revealed by GRACE , 2007 .

[192]  Andrew Shepherd,et al.  Recent Sea-Level Contributions of the Antarctic and Greenland Ice Sheets , 2007, Science.

[193]  J. Wahr,et al.  A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe , 2007 .

[194]  K. Heki,et al.  Slow postseismic recovery of geoid depression formed by the 2004 Sumatra‐Andaman Earthquake by mantle water diffusion , 2007 .

[195]  J. Kusche Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models , 2007 .

[196]  A. Cazenave,et al.  Estimation of steric sea level variations from combined GRACE and Jason-1 data , 2007 .

[197]  I. Fukumori,et al.  Antarctic Circumpolar Current Transport Variability during 2003–05 from GRACE , 2007 .

[198]  J. Famiglietti,et al.  Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE , 2007 .

[199]  Jean-Charles Marty,et al.  Temporal gravity field models inferred from GRACE data , 2007 .

[200]  C. Hughes,et al.  Propagation of signals in basin‐scale ocean bottom pressure from a barotropic model , 2006 .

[201]  M. Tamisiea,et al.  Decontaminating tide gauge records for the influence of glacial isostatic adjustment: The potential impact of 3‐D Earth structure , 2006 .

[202]  Scott B. Luthcke,et al.  FAST TRACK PAPER: Tide model errors and GRACE gravimetry: towards a more realistic assessment , 2006 .

[203]  Hubert H. G. Savenije,et al.  Assessment of Gravity Recovery and Climate Experiment (GRACE) temporal signature over the upper Zambezi , 2006 .

[204]  R. Nerem,et al.  Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations , 2006, Science.

[205]  F. Pollitz,et al.  Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth , 2006 .

[206]  James L. Davis,et al.  Land water storage within the Congo Basin inferred from GRACE satellite gravity data , 2006 .

[207]  J. Wahr,et al.  Acceleration of Greenland ice mass loss in spring 2004 , 2006, Nature.

[208]  Pieter Visser,et al.  Accuracy assessment of the monthly GRACE geoids based upon a simulation , 2006 .

[209]  B. Tapley,et al.  Alaskan mountain glacial melting observed by satellite gravimetry , 2006 .

[210]  Chen Ji,et al.  Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake , 2006, Science.

[211]  S. Swenson,et al.  A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois , 2006 .

[212]  Ki-Weon Seo,et al.  Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time‐variable gravity observations , 2006 .

[213]  B. Tapley,et al.  Antarctic mass rates from GRACE , 2006 .

[214]  J. Famiglietti,et al.  Terrestrial water mass load changes from Gravity Recovery and Climate Experiment (GRACE) , 2006 .

[215]  D. Lettenmaier,et al.  Anthropogenic impacts on continental surface water fluxes , 2006 .

[216]  C. Hughes,et al.  Observing seasonal bottom pressure variability in the North Pacific with GRACE , 2006 .

[217]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[218]  G. Niu,et al.  Assessing a land surface model's improvements with GRACE estimates , 2006 .

[219]  J. Wahr,et al.  Measurements of Time-Variable Gravity Show Mass Loss in Antarctica , 2006, Science.

[220]  R. Ponte Oceanic Response to Surface Loading Effects Neglected in Volume-Conserving Models , 2006 .

[221]  Don P. Chambers,et al.  Observing seasonal steric sea level variations with GRACE and satellite altimetry , 2006 .

[222]  J. Fyfe,et al.  Simulated changes in the extratropical Southern Hemisphere winds and currents , 2006 .

[223]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[224]  Petra Döll,et al.  GRACE observations of changes in continental water storage , 2006 .

[225]  Hiroshi Takiguchi,et al.  Crustal deformations associated with the great Sumatra-Andaman earthquake deduced from continuous GPS observation , 2005 .

[226]  E. Ivins,et al.  Antarctic glacial isostatic adjustment: a new assessment , 2005, Antarctic Science.

[227]  Z. Martinec,et al.  Time-domain approach to linearized rotational response of a three-dimensional viscoelastic earth model induced by glacial-isostatic adjustment: I. Inertia-tensor perturbations , 2005 .

[228]  James L. Davis,et al.  Constraining hydrological and cryospheric mass flux in southeastern Alaska using space‐based gravity measurements , 2005 .

[229]  C. Shum,et al.  GRACE observations of M2 and S2 ocean tides underneath the Filchner‐Ronne and Larsen ice shelves, Antarctica , 2005 .

[230]  Isabella Velicogna,et al.  Greenland mass balance from GRACE , 2005 .

[231]  M. Cheng,et al.  GGM02 – An improved Earth gravity field model from GRACE , 2005 .

[232]  Peter Schwintzer,et al.  Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns , 2005 .

[233]  A. Dziewoński,et al.  Multiple CMT source analysis of the 2004 Sumatra earthquake , 2005 .

[234]  Jürgen Kusche,et al.  Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data , 2005 .

[235]  A. Paulson,et al.  The rotational stability of an ice-age earth , 2005 .

[236]  A. Cazenave,et al.  Effects of land water storage on global mean sea level over the past half century , 2005 .

[237]  F. LeMoine,et al.  Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements , 2005 .

[238]  U. Meyer,et al.  An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S , 2005 .

[239]  Isabelle Panet,et al.  Can tectonic processes be recovered from new gravity satellite data , 2004 .

[240]  J. Willis,et al.  Interannual variability in upper ocean heat content, temperature, and thermosteric expansion on global scales , 2004 .

[241]  Anny Cazenave,et al.  Present‐day sea level change: Observations and causes , 2004 .

[242]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[243]  R. Steven Nerem,et al.  Preliminary observations of global ocean mass variations with GRACE , 2004 .

[244]  Victor Zlotnicki,et al.  Time‐variable gravity from GRACE: First results , 2004 .

[245]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[246]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[247]  A. Paulson,et al.  Three-dimensional finite-element modelling of Earth's viscoelastic deformation: effects of lateral variations in lithospheric thickness , 2003 .

[248]  John C. Ries,et al.  Large scale ocean circulation from the GRACE GGM01 Geoid , 2003 .

[249]  Eric Rignot,et al.  Contribution of the Patagonia Icefields of South America to Sea Level Rise , 2003, Science.

[250]  M. Meredith,et al.  Coherence of Antarctic sea levels, Southern Hemisphere Annular Mode, and flow through Drake Passage , 2003 .

[251]  Jan M. Johansson,et al.  Vertical crustal motion observed in the BIFROST project , 2003 .

[252]  M. Brandon,et al.  Transport and variability of the Antarctic Circumpolar Current in Drake Passage , 2003 .

[253]  M. C. Gennero,et al.  Present-Day Sea Level Change: Observations and Causes , 2003 .

[254]  I. Fukumori,et al.  Recent Earth Oblateness Variations: Unraveling Climate and Postglacial Rebound Effects , 2002, Science.

[255]  J. Wahr,et al.  A method for separating antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data , 2002 .

[256]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[257]  A. Arendt,et al.  Rapid Wastage of Alaska Glaciers and Their Contribution to Rising Sea Level , 2002, Science.

[258]  C. Reigber,et al.  CHAMP mission status , 2002 .

[259]  D. Paillard Glacial cycles: Toward a new paradigm , 2001 .

[260]  Interannual mean sea level change and the Earth's water mass budget , 2000 .

[261]  G. Spada,et al.  Postglacial rebound in a non‐Newtonian spherical Earth , 2000 .

[262]  R. Stein The role of stress transfer in earthquake occurrence , 1999, Nature.

[263]  Myles R. Allen,et al.  A comparison of competing explanations for the 100,000‐yr Ice Age cycle , 1999 .

[264]  J. Tromp,et al.  Surface loading of a viscoelastic earth—II. Spherical models , 1999 .

[265]  S. Ono Water in the Earth's Mantle , 1999 .

[266]  R. Ponte A preliminary model study of the large‐scale seasonal cycle in bottom pressure over the global ocean , 1999 .

[267]  A. Cazenave,et al.  Annual cycle in mean sea level from Topex Poseidon and ERS-1: inference on the global hydrological cycle , 1999 .

[268]  Kenneth W. Hudnut,et al.  Poroelastic rebound along the Landers 1992 earthquake surface rupture , 1998 .

[269]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[270]  Byron D. Tapley,et al.  Seasonal global water mass budget and mean sea level variations , 1998 .

[271]  N. K. Pavlis,et al.  The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96 , 1998 .

[272]  J. Mitrovica,et al.  Postglacial sea-level change on a rotating Earth , 1998 .

[273]  C. Wunsch,et al.  How well does a 1/4° global circulation model simulate large-scale oceanic observations? , 1996 .

[274]  G. Spada,et al.  Analytical visco-elastic relaxation models , 1996 .

[275]  Fred F. Pollitz,et al.  Coseismic Deformation From Earthquake Faulting On A Layered Spherical Earth , 1996 .

[276]  Bifrost GPS measurements to constrain geodynamic processes in Fennoscandia , 1996 .

[277]  W. M. Kaula,et al.  Gravity field determination and characteristics : retrospective and prospective , 1995 .

[278]  J. Wahr,et al.  Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic earth , 1995 .

[279]  Carl Wunsch,et al.  Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large‐scale ocean circulation , 1994 .

[280]  D. Chambers,et al.  Accuracy assessment of the large‐scale dynamic ocean topography from TOPEX/POSEIDON altimetry , 1994 .

[281]  W. R. Peltier,et al.  Constraints on mantle viscosity from relative sea level variations in Hudson Bay , 1992 .

[282]  C. Portelli,et al.  Laser geodynamic satellite (LAGEOS II) , 1991 .

[283]  K. Lambeck,et al.  Holocene glacial rebound and sea-level change in NW Europe , 1990 .

[284]  P. Gasperini,et al.  Lateral heterogeneities in mantle viscosity and post‐glacial rebound , 1989 .

[285]  C. Shum,et al.  Temporal variations in low degree zonal harmonics from Starlette orbit analysis , 1989 .

[286]  Ian Parsons,et al.  Surface deformation due to shear and tensile faults in a half-space , 1986 .

[287]  Wayne Thatcher,et al.  Nonlinear strain buildup and the earthquake cycle on the San Andreas Fault , 1983 .

[288]  W. Peltier,et al.  Viscous gravitational relaxation , 1982 .

[289]  C. Jekeli Alternative methods to smooth the Earth's gravity field , 1981 .

[290]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[291]  Carl Wunsch,et al.  On Using Satellite Altimetry to Determine the General Circulation of the Oceans With Application to Geoid Improvement (Paper 80R0631) , 1980 .

[292]  A. L. BERGER,et al.  Support for the astronomical theory of climatic change , 1977, Nature.

[293]  G. Schubert,et al.  The viscosity of the earth's mantle , 1976 .

[294]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[295]  Amos Nur,et al.  Postseismic Viscoelastic Rebound , 1974, Science.

[296]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[297]  J R Booker,et al.  Aftershocks Caused by Pore Fluid Flow? , 1972, Science.

[298]  L. P. Pellinen Physical Geodesy , 1972 .

[299]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load. Part II , 1936 .

[300]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load , 1935 .

[301]  Charles Lyell,et al.  I. The Bakerian Lecture. —On the proofs of a gradual rising of the land certain parts of Sweden , 1835, Philosophical Transactions of the Royal Society of London.