VLA Measurements of Faraday Rotation through Coronal Mass Ejections

Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun, which play an important role in space weather. Faraday rotation is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma such as a CME. Faraday rotation is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. Faraday-rotation observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch. We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made sensitive Very Large Array (VLA) full-polarization observations using 1 – 2 GHz frequencies of a constellation of radio sources through the solar corona at heliocentric distances that ranged from 6 – 15R⊙$15~\mathrm{R}_{\odot}$. Two sources (0842+1835 and 0900+1832) were occulted by a single CME, and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. (Solar Phys., 98, 341, 1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the Large Angle and Spectrometric Coronagraph (LASCO) C3 instrument to determine the Thomson-scattering brightness [BT$\mathrm{B}_{\mathrm{T}}$], providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation. A constant-density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on BT$\mathrm{B}_{\mathrm{T}}$ and Faraday rotation. The plasma densities (6–22×103cm−3$6\,\mbox{--}\,22\times10^{3}~\mbox{cm}^{-3}$) and axial magnetic-field strengths (2 – 12 mG) inferred from our models are consistent with the modeling work of Liu et al. (Astrophys. J., 665, 1439, 2007) and Jensen and Russell (Geophys. Res. Lett., 35, L02103, 2008), as well as previous CME Faraday-rotation observations by Bird et al. (1985).

[1]  W. Axford An Analytic Model Illustrating the Effects of Rotation on a Magnetosphere , 1976 .

[2]  B. Low,et al.  Three‐dimensional and twisted: An MHD interpretation of on‐disk observational characteristics of coronal mass ejections , 2000 .

[3]  M. Garzelli,et al.  Radial profile of the inner heliospheric magnetic field as deduced from Faraday rotation observations , 2013, 1303.6633.

[4]  R. Manchester,et al.  Measurement of the electron density and magnetic field of the solar wind using millisecond pulsars , 2012, 1202.2263.

[5]  S. Spangler,et al.  Radio remote sensing of the corona and the solar wind , 2008, Proceedings of the International Astronomical Union.

[6]  A. Vourlidas,et al.  Modeling of Flux Rope Coronal Mass Ejections , 2006 .

[7]  T. Sakurai,et al.  The study of coronal plasma structures and fluctuations with Faraday rotation measurements , 1994 .

[8]  A. Vourlidas,et al.  Deriving the Electron Density of the Solar Corona from the Inversion of Total Brightness Measurements , 2001 .

[9]  E. Christian,et al.  The STEREO Mission: An Introduction , 2008 .

[10]  Kevin Stovall,et al.  MEASURING THE MAGNETIC FIELD OF CORONAL MASS EJECTIONS NEAR THE SUN USING PULSARS , 2016 .

[11]  C. Heiles,et al.  The Comparison of Total Electron Content Between Radio and Thompson Scattering , 2016 .

[12]  A. Vourlidas,et al.  FIRST DETERMINATION OF THE TRUE MASS OF CORONAL MASS EJECTIONS: A NOVEL APPROACH TO USING THE TWO STEREO VIEWPOINTS , 2009, 0903.4344.

[13]  K. Golap,et al.  CASA Architecture and Applications , 2007 .

[14]  MESSENGER Observations of Magnetohydrodynamic Waves in the Solar Corona from Faraday Rotation , 2013 .

[15]  P. Chen Coronal Mass Ejections: Models and Their Observational Basis , 2011 .

[16]  Y. Sofue,et al.  Faraday rotation of linearly polarized radio waves from the Crab Nebula by the solar corona , 1972 .

[17]  E. Jensen,et al.  Faraday rotation observations of CMEs , 2008 .

[18]  Matthew West,et al.  On the 3-D reconstruction of Coronal Mass Ejections using coronagraph data , 2010 .

[19]  William J. Burke,et al.  Variable time delays in the propagation of the interplanetary magnetic field , 2002 .

[20]  M. Vogt,et al.  Space weather drivers in the ACE era , 2004 .

[21]  H. W. Babcock The Topology of the Sun's Magnetic Field and the 22-YEAR Cycle. , 1961 .

[22]  S. Mancuso,et al.  Coronal Faraday Rotation Observations: Measurements and Limits on Plasma Inhomogeneities , 1999 .

[23]  M. Bird,et al.  Characteristics of Coronal Alfvén Waves Deduced from Helios Faraday Rotation Measurements , 1997 .

[24]  A. Hundhausen,et al.  Observation of a coronal transient from 1.2 to 6 solar radii , 1985 .

[25]  R. MacQueen,et al.  Mass ejections from the Sun: A view from Skylab , 1974 .

[26]  S. Spangler The Strength and Structure of the Coronal Magnetic Field , 2005 .

[27]  B. Low Coronal mass ejections, magnetic flux ropes, and solar magnetism , 2001 .

[28]  L. Ingleby,et al.  Probing the Large-Scale Plasma Structure of the Solar Corona with Faraday Rotation Measurements , 2007, astro-ph/0701538.

[29]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[30]  M. Bird Coronal Faraday rotation of occulted radio signals , 2007 .

[31]  S. Mancuso,et al.  Faraday Rotation and Models for the Plasma Structure of the Solar Corona , 2000 .

[32]  Jason E. Kooi,et al.  MEASUREMENTS OF CORONAL FARADAY ROTATION AT 4.6 R☉ , 2013, 1307.1727.

[33]  F. Mariani,et al.  Magnetic loop behind an interplanetary shock: Voyager, Helios and IMP-8 observations , 1981 .

[34]  J. F. Mckenzie,et al.  An analytic solar magnetic field model , 1998 .

[35]  H. Volland,et al.  Coronal Faraday rotation during solar occultation of PSR0525 + 21 , 1980, Nature.

[36]  W. Rusch,et al.  The quasi-stationary coronal magnetic field and electron density as determined from a Faraday rotation experiment , 1970 .

[37]  M. Pätzold,et al.  Coronal Radio Occultation Experiments with the Helios Solar Probes: Correlation/Spectral Analysis of Faraday Rotation Fluctuations , 2015 .

[38]  D. Gurnett,et al.  Introduction to Plasma Physics: Introduction , 2005 .

[39]  A. Vourlidas,et al.  The Proper Treatment of Coronal Mass Ejection Brightness: A New Methodology and Implications for Observations , 2006 .

[40]  L. Burlaga,et al.  Magnetic field structure of interplanetary magnetic clouds at 1 AU , 1990 .

[41]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[42]  V. Domingo,et al.  The SOHO mission: An overview , 1995 .

[43]  T. Sakurai,et al.  Use of the very large array for measurement of time variable Faraday rotation , 1994 .

[44]  C. J. Wolfson,et al.  Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) , 2008 .

[45]  James Chen Theory of prominence eruption and propagation: Interplanetary consequences , 1996 .

[46]  A. Stanger,et al.  The Calm before the Storm: The Link between Quiescent Cavities and Coronal Mass Ejections , 2006, The Astrophysical Journal.

[47]  J. Kasper,et al.  DIAGNOSTICS OF THE SOLAR CORONA FROM COMPARISON BETWEEN FARADAY ROTATION MEASUREMENTS AND MAGNETOHYDRODYNAMIC SIMULATIONS , 2014 .

[48]  A. Vourlidas,et al.  The Impact of Geometry on Observations of CME Brightness and Propagation , 2009 .

[49]  W. Rusch,et al.  Pioneer 6: Measurement of Transient Faraday Rotation Phenomena Observed during Solar Occultation , 1969, Science.

[50]  N. Soboleva,et al.  Faraday effect in the solar supercorona during its 1977--1982 radio occultations of the Crab Nebula , 1983 .

[51]  E. Robbrecht,et al.  AUTOMATED LASCO CME CATALOG FOR SOLAR CYCLE 23: ARE CMEs SCALE INVARIANT? , 2008, 0810.1252.

[52]  N. R. Sheeley,et al.  White-light and radio sounding observations of coronal transients , 1985 .

[53]  A. Vourlidas,et al.  USING MULTIPLE-VIEWPOINT OBSERVATIONS TO DETERMINE THE INTERACTION OF THREE CORONAL MASS EJECTIONS OBSERVED ON 2012 MARCH 5 , 2015 .

[54]  M. Pätzold,et al.  The Pioneer 6 Faraday rotation transients‐On the interpretation of coronal Faraday rotation data , 1998 .

[56]  R. Howard,et al.  Reconstructing the 3D Morphology of the 17 May 2008 CME , 2009 .

[57]  H. Wechsler,et al.  Automatic Detection and Tracking of Coronal Mass Ejections in Coronagraph Time Series , 2008 .

[58]  B. Low,et al.  A Time-dependent Three-dimensional Magnetohydrodynamic Model of the Coronal Mass Ejection , 1998 .

[59]  H. Volland,et al.  The mean coronal magnetic field determined from HELIOS Faraday rotation measurements , 1987 .

[60]  S. Johnston,et al.  The Magnetic Field of the Solar Corona from Pulsar Observations , 2007, 0705.1869.

[61]  J. Richardson,et al.  Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation , 2007, 0705.2780.

[62]  Russell A. Howard,et al.  The SOHO/LASCO CME Catalog , 2009 .

[63]  J. Kooi Very large array faraday rotation studies of the coronal plasma , 2016 .

[64]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO) , 1995 .

[65]  E. Hildner,et al.  The outer solar corona as observed from Skylab - Preliminary results , 1974 .

[66]  R. Schwenn Space Weather: The Solar Perspective , 2006 .

[67]  C. Stelzried,et al.  Faraday Rotation Observations During the 1970 Pioneer 9 Solar Occultation , 1973 .

[68]  A. Poland,et al.  A study of the background corona near solar minimum , 1977 .

[69]  J. Phillips,et al.  Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections , 1991 .

[70]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[71]  L. Burlaga,et al.  Magnetic clouds and force‐free fields with constant alpha , 1988 .

[72]  A. Vourlidas,et al.  COMPREHENSIVE ANALYSIS OF CORONAL MASS EJECTION MASS AND ENERGY PROPERTIES OVER A FULL SOLAR CYCLE , 2010, 1008.3737.

[73]  H. Volland,et al.  Possible evidence for coronal Alfvén waves , 1982 .

[74]  Van de Hulst,et al.  The electron density of the solar corona , 1950 .