A User's Guide to Principal Components.

Preface.Introduction.1. Getting Started.2. PCA with More Than Two Variables.3. Scaling of Data.4. Inferential Procedures.5. Putting It All Together-Hearing Loss I.6. Operations with Group Data.7. Vector Interpretation I : Simplifications and Inferential Techniques.8. Vector Interpretation II: Rotation.9. A Case History-Hearing Loss II.10. Singular Value Decomposition: Multidimensional Scaling I.11. Distance Models: Multidimensional Scaling II.12. Linear Models I : Regression PCA of Predictor Variables.13. Linear Models II: Analysis of Variance PCA of Response Variables.14. Other Applications of PCA.15. Flatland: Special Procedures for Two Dimensions.16. Odds and Ends.17. What is Factor Analysis Anyhow?18. Other Competitors.Conclusion.Appendix A. Matrix Properties.Appendix B. Matrix Algebra Associated with Principal Component Analysis.Appendix C. Computational Methods.Appendix D. A Directory of Symbols and Definitions for PCA.Appendix E. Some Classic Examples.Appendix F. Data Sets Used in This Book.Appendix G. Tables.Bibliography.Author Index.Subject Index.

[1]  J. A. López del Val,et al.  Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.

[2]  W F Velicer,et al.  Component Analysis versus Common Factor Analysis: Some issues in Selecting an Appropriate Procedure. , 1990, Multivariate behavioral research.

[3]  B. Flury Common Principal Components and Related Multivariate Models , 1988 .

[4]  I. Jolliffe Principal Component Analysis , 2005 .