Stability shear stress and equilibrium cross-sectional geometry of sheltered tidal channels

This study relates tidal channel cross-sectional area (A) to peak spring discharge (Q) via a physical mechanism, namely the stability shear stress ( tau sub(S)) just necessary to maintain a zero gradient in net along-channel sediment transport. It is assumed that if bed shear stress ( tau ) is greater than tau sub(S), net erosion will occur, increasing A, and reducing tau similar to (Q/A) super(2) back toward tau sub(S). If tau < tau sub(S) there will be net deposition, reducing A and increasing tau toward tau sub(S). A survey of the literature allows estimates of Q and A at 242 sections in 26 separate sheltered tidal systems. Assuming a single value of tau sub(S) characterizes the entire length of a given tidal channel, it is predicted that along-channel geometry will follow the relation Ah sub(R) super(1) super(/) super(6) similar to Q. Along-channel regressions of the form Ah sub(R) super(1) super(/) super(6) similar to Q super( beta ) give a mean observed value for beta of 1.00 plus or minus 0.06, which is consistent with this concept. Results indicate that a lower bound on tau sub(S) (and an upper bound on A) for stable channels is provided by the critical shear stress ( tau sub(C)) just capable of initiating sediment motion. Observed tau sub(S) is found to vary among all systems as a function of spring tidal range (R sub(sp)) according to the relation tau sub(S) approximately 2.3 R sub(sp) super(0.79) tau sub(C). Observed deviations from uniform tau sub(S) along individual channels are associated with along-channel variation in the direction of maximum discharge (i.e., flood-versus ebb-dominance).

[1]  S. Wallis,et al.  Calibration studies concerning a one-dimensional numerical tidal model with particular reference to resistance coefficients , 1984 .

[2]  R. Uncles,et al.  Distributions of suspended sediment at high water in a macrotidal estuary , 1989 .

[3]  Francis F Escoffier,et al.  Hydraulics and Stability of Tidal Inlets. , 1977 .

[4]  C. Paola Flow and skin friction over natural rough beds , 1983 .

[5]  M. P. O'Brien,et al.  Equilibrium Flow Areas of Inlets on Sandy Coasts , 1969 .

[6]  E. W. Lane Design of Stable Channels , 1955 .

[7]  V. N. Jonge Tidal flow and residual flow in the Ems Estuary , 1992 .

[8]  M. Krishnamurthy Tidal Prism of Equilibrium Inlets , 1977 .

[9]  A. C. Redfield Ontogeny of a Salt Marsh Estuary , 1965, Science.

[10]  Luna Bergere Leopold,et al.  Hydraulic geometry of a small tidal estuary , 1963 .

[11]  J. Salomon,et al.  Effects of tides on mixing and suspended sediment transport in macrotidal estuaries , 1980 .

[12]  P. Diplas Characteristics of Self‐Formed Straight Channels , 1990 .

[13]  H. J. De Vriend,et al.  A model of morphological behaviour of tidal basins , 1994 .

[14]  P. Bullock,et al.  RESPONSE CHARACTERISTICS OF A TIDAL INLET: A CASE STUDY , 1975 .

[15]  M. Gourlay,et al.  INLETS/ESTUARIES DISCHARGING INTO SHELTERED WATERS , 1980 .

[16]  K. Dyer,et al.  Coastal and Estuarine Sediment Dynamics , 1986 .

[17]  C. Friedrichs,et al.  Nonlinear diffusion of the tidal signal in frictionally dominated embayments , 1992 .

[18]  Emmanuel Partheniades,et al.  Erosion and Deposition of Cohesive Soils , 1965 .

[19]  Jørgen Fredsøe,et al.  Shape and Dimensions of Stationary Dunes in Rivers , 1982 .

[20]  H. Einstein,et al.  The Bed-Load Function for Sediment Transportation in Open Channel Flows , 1950 .

[21]  Jørgen Fredsøe,et al.  Sediment Ripples and Dunes , 1982 .

[22]  M. L. Barton,et al.  Bulk properties of intertidal sediments in a muddy, macrotidal estuary , 1992 .

[23]  F. Gerritsen,et al.  CROSS-SECTIONAL STABILITY OF ESTUARY CHANNELS IN THENETHERLANDS , 1991 .

[24]  F. Henderson Open channel flow , 1966 .

[25]  J. Jarrett,et al.  Tidal Prism - Inlet Area Relationships , 1976 .

[26]  G. Parker Self-formed straight rivers with equilibrium banks and mobile bed. Part 1. The sand-silt river , 1978, Journal of Fluid Mechanics.

[27]  P. Bruun Stability of tidal inlets: Theory and engineering , 1978 .

[28]  P. Bruun Tidal Inlets Housekeeping , 1967 .

[29]  K. Dyer,et al.  Threshold conditions for sand movement on a rippled bed , 1986 .

[30]  G. H. Johnson,et al.  Modern Sediments and Facies Model for a Microtidal Coastal Plain Estuary, the James Estuary, Virginia , 1991 .

[31]  C. Friedrichs,et al.  Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis☆ , 1988 .

[32]  T. Hume Empirical Stability Relationships for Estuarine Waterways and Equations for Stable Channel Design , 1991 .

[33]  R. Uncles,et al.  Lateral Distributions of Water, Salt and Sediment Transport in a Partly Mixed Estuary , 1984 .

[34]  J. V. D. Kreeke Can multiple tidal inlets be stable , 1990 .

[35]  Brian A. O'Connor,et al.  CHAPTER 231 Estuary Geometry as a Function of Tidal Range , 2010 .

[36]  R. Pingree,et al.  Sand transport paths around the British Isles resulting from M 2 and M 4 tidal interactions , 1979 .

[37]  W. B. Langbein,et al.  THE HYDRAULIC GEOMETRY OF A SHALLOW ESTUARY , 1963 .

[38]  L. Gardner,et al.  Geomorphic and hydraulic evolution of tidal creeks on a subsiding beach ridge plain, North Inlet, S.C. , 1980 .

[39]  R. Pestrong The development of drainage patterns on tidal marshes , 1965 .

[40]  S. R. McLean,et al.  Spatially averaged flow over a wavy surface , 1977 .

[41]  G. R. Thomas,et al.  Tidal Prism-Inlet Area Relations for Small Tidal Inlets , 1980 .

[42]  James M. Coleman,et al.  Processes of Channel Development in a High-Tide-Range Environment: Cambridge Gulf-Ord River Delta, Western Australia , 1973, The Journal of Geology.