A Sliding Mode Controller for Boost Inverter Based Power Management System Using Battery and Photovoltaic System

A design tool with appropriate characteristics must be available to support the power management process. A major role of the battery is the Charge State (SOC) or simply the power of the battery measured using the original voltage value. A photovoltaic panel with a 12V DC voltage of 650W is used in this process. The approach is simulation/modeling which aims to improve battery charging process and controlling the power flow using sliding mode controller to enhance the performance. The goal is to research the energy and power loss of a smart battery-buffered load controller (BBSL) when used for the primary frequency controls on demand (PFC). Firstly, the depletion of battery energy arising from the PFC charging and discharge methods is evaluated. This research analyses the influence of PFC droop properties and dead-bands on the energy loss in a Lithium ion battery, by simulation measurements using a single stage BBSL. The model represents a nonlinear current-dependent resistance to the total voltage decrease of the battery. The energy loss simulated as the energy lost in this resistance is thus measured. HPSO-algorithm used in this analysis is one of the photovoltaic models used in photovoltaic systems, with maximum power, and with optimal conditions. The results showed that the battery charging simulation increased by 0.05% every 30 minutes. Furthermore, the simulation validation using Matlab/Simulink is carried out with data in accordance with the prototype design, at an efficiency of 88.4%.