Combinatorial and Evolution-Based Methods in the Creation of Enantioselective Catalysts.

Combinatorial methods in the development of enantioselective homogeneous catalysts constitute a new branch of catalysis research. The goal is to prepare libraries of potential asymmetric catalysts, rather than choosing the traditional one-catalyst-at-a-time approach. Several conceptional advancements have been reported in the parallel preparation of chiral ligands. Currently the most meaningful systems constitute modularly constructed ligands on solid supports, which allow high degrees of structural diversity and thus the maximum probability of finding enantioselective catalysts or even new types of ligands for asymmetric catalysis. Search strategies have been developed which amongst other things, lead to catalysts not likely to have been discovered by traditional methods. Genuine application of such strategies involve thousands of catalysts and require high-throughput screening systems capable of assaying enantioselectivity. The first high-throughput ee-screening systems were in fact developed for use in the directed evolution of enantioselective enzymes, a process based on "evolution in the test tube" in which the appropriate methods of random mutagenesis, gene expression, and ee assays are combined. Since no screening system is likely to be universal, different approaches are necessary. Thus far these include assays based on UV/Vis, fluorescence, circular dichroism, mass spectrometry, and even modified gas chromatography as well as special forms of capillary electrophoresis. One of the most efficient systems involves the concept of the mass-spectrometric detection of deuterium-labeled pseudo-enantiomers and pseudo-prochiral compounds with which about 1000 exact ee determinations can be achieved per day, although the assay is restricted to kinetic resolution and/or reactions of prochiral compounds bearing enantiotopic groups. Super-high-throughput screening for enantioselectivity is possible in many cases by making use of chirally modified capillary array electrophoresis in a parallel step. Accordingly, 7000 to 30 000 ee determinations can be carried out per day. These and other analytical developments are expected to stimulate further research in the combinatorial search for asymmetric homogeneous catalysts and in the directed evolution of enantioselective enzymes for use in organic chemistry.

[1]  K. Müllen,et al.  Combinatorial Testing of Supported Catalysts for the Heterogeneous Polymerization of Olefins. , 2000, Angewandte Chemie.

[2]  A. Herrmann,et al.  Ein kombinatorisches Testverfahren fr Trgerkatalysatoren fr die heterogene Olefinpolymerisation , 2000 .

[3]  J. Sutherland,et al.  Catalyst Screening Using an Array of Thermistors. , 2000, Angewandte Chemie.

[4]  Detlev Belder,et al.  Super-High-Throughput Screening of Enantioselective Catalysts by Using Capillary Array Electrophoresis. , 2000, Angewandte Chemie.

[5]  M. T. Reetz,et al.  Super‐Hochdurchsatz‐Screening von enantioselektiven Katalysatoren mittels parallelisierter Kapillarelektrophorese , 2000 .

[6]  H. Schröder,et al.  High-Throughput Structure Verification of a Substituted 4-Phenylbenzopyran Library by Using 2D NMR Techniques. , 2000, Angewandte Chemie.

[7]  Maureen Rouhi,et al.  New Pathway Found To Type 2 Diabetes , 2000 .

[8]  M. Nardini,et al.  Directed evolution of an enantioselective lipase. , 2000, Chemistry & biology.

[9]  Manfred Baerns,et al.  An evolutionary approach in the combinatorial selection and optimization of catalytic materials , 2000 .

[10]  M. Reetz,et al.  Computer Image Processing of Transmission Electron Micrograph Pictures as a Fast and Reliable Tool To Analyze the Size of Nanoparticles , 2000 .

[11]  G. Georgiou,et al.  High-throughput screening of enzyme libraries. , 2000, Current opinion in biotechnology.

[12]  R. Hertzberg,et al.  High-throughput screening: new technology for the 21st century. , 2000, Current opinion in chemical biology.

[13]  S. Gilbertson,et al.  Asymmetric Catalysis with Libraries of Palladium β-Turn Phosphine Complexes , 2000 .

[14]  H. Wan,et al.  Determination of enantiomeric excess by capillary electrophoresis , 2000, Electrophoresis.

[15]  J Sadowski,et al.  Optimization of chemical libraries by neural networks. , 2000, Current opinion in chemical biology.

[16]  G Gauglitz,et al.  Optical detection methods for combinatorial libraries. , 2000, Current opinion in chemical biology.

[17]  S. Kobayashi,et al.  Immobilized catalysts in combinatorial chemistry. , 2000, Current opinion in chemical biology.

[18]  L. Weber,et al.  Combinatorial chemistry: Evolution of design and design of evolution: Editorial overview , 2000 .

[19]  J. Sutherland,et al.  Evolutionary optimisation of enzymes. , 2000, Current opinion in chemical biology.

[20]  Paul J. Fagan,et al.  Using Intelligent/Random Library Screening To Design Focused Libraries for the Optimization of Homogeneous Catalysts: Ullmann Ether Formation , 2000 .

[21]  Iuliu I. Blaga,et al.  Automated parallel DNA sequencing on multiple channel microchips. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[22]  V. Schurig,et al.  Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography. , 2000, Journal of chromatography. A.

[23]  G. Blaschke,et al.  Enantiomer separation of drugs by capillary electromigration techniques. , 2000, Journal of chromatography. A.

[24]  Kusakabe,et al.  Chiral catalyst optimization using both solid-phase and liquid-phase methods in asymmetric aza Diels-Alder reactions , 2000, Organic letters.

[25]  M. Becker,et al.  IR‐Thermographie‐Screening von thermoneutralen oder endothermen Reaktionen: die Ringschluss‐Olefin‐Metathese , 2000 .

[26]  Reetz,et al.  IR-Thermographic Screening of Thermoneutral or Endothermic Transformations: The Ring-Closing Olefin Metathesis Reaction. , 2000, Angewandte Chemie.

[27]  Bailey,et al.  Separation and detection of explosives on a microchip using micellar electrokinetic chromatography and indirect laser-induced fluorescence , 2000, Analytical chemistry.

[28]  James R. Porter,et al.  Ti-Catalyzed Regio- and Enantioselective Synthesis of Unsaturated α-Amino Nitriles, Amides, and Acids. Catalyst Identification through Screening of Parallel Libraries , 2000 .

[29]  S. Ceccarelli,et al.  Discovery of a new efficient chiral ligand for copper-catalyzed enantioselective Michael additions by high-throughput screening of a parallel library. , 2000, Chemistry.

[30]  Cesare Gennari,et al.  Entdeckung eines effizienten chiralen Liganden für die Cu‐katalysierte enantioselektive Michael‐Addition durch High‐Throughput‐Screening einer Parallelbibliothek , 2000 .

[31]  van der Linden HJ,et al.  Combinatorial Chemistry for Ligand Development in Catalysis: Synthesis and Catalysis Screening of Peptidosulfonamide Tweezers on the Solid Phase. , 2000, The Journal of organic chemistry.

[32]  Darryn Bryant,et al.  Toward larger chemical libraries: Encoding with fluorescent colloids in combinatorial chemistry , 2000 .

[33]  P. Walsh,et al.  The Use of Achiral Ligands to Convey Asymmetry: Chiral Environment Amplification , 2000 .

[34]  Alan R. Fersht,et al.  Directed evolution of new catalytic activity using the α/β-barrel scaffold , 2000, Nature.

[35]  M. Reetz,et al.  Enantioselective enzymes for organic synthesis created by directed evolution. , 2000, Chemistry.

[36]  M. Reetz Application of directed evolution in the development of enantioselective enzymes , 2000 .

[37]  Olivier Lavastre,et al.  Entdeckung neuartiger Allylierungskatalysatoren durch kolorimetrischen Assay , 1999 .

[38]  Morken,et al.  Discovery of Novel Catalysts for Allylic Alkylation with a Visual Colorimetric Assay. , 1999, Angewandte Chemie.

[39]  A. Hoveyda Combinatorial catalysis: identification of potent chiral catalysts through fluorescent bead signaling. , 1999, Chemistry & biology.

[40]  Mark E. Davis,et al.  Combinatorial methods: How will they integrate into chemical engineering? , 1999 .

[41]  A. Pfaltz Chiral Heterocycles as Ligands in Asymmetric Catalysis , 1999 .

[42]  R. Crabtree Combinatorial and rapid screening approaches to homogeneous catalyst discovery and optimization , 1999 .

[43]  Stephen Stinson,et al.  CHIRAL DRUG INTERACTIONS , 1999 .

[44]  S. L. Dixon,et al.  LASSOO: a generalized directed diversity approach to the design and enrichment of chemical libraries. , 1999, Journal of medicinal chemistry.

[45]  S. Gilbertson,et al.  The parallel synthesis of peptide based phosphine ligands , 1999 .

[46]  S. Peukert,et al.  Enantioselective parallel synthesis using polymer-supported chiral Co(salen) complexes. , 1999, Organic letters.

[47]  Zengin,et al.  High-Throughput Testing of Heterogeneous Catalyst Libraries Using Array Microreactors and Mass Spectrometry. , 1999, Angewandte Chemie.

[48]  Isik Onal,et al.  Hochdurchsatz-Screening von Heterogenkatalysator-Bibliotheken unter Verwendung eines Mehrkammerreaktorsystems und der Massenspektrometrie , 1999 .

[49]  Hoffmann,et al.  Parallel Synthesis and Testing of Catalysts under Nearly Conventional Testing Conditions. , 1999, Angewandte Chemie.

[50]  Christian Hoffmann,et al.  Parallele Synthese und Prüfung von Katalysatoren nah an konventionellen Testbedingungen , 1999 .

[51]  D P Glavin,et al.  Microfabricated capillary electrophoresis amino acid chirality analyzer for extraterrestrial exploration. , 1999, Analytical chemistry.

[52]  Jandeleit,et al.  Combinatorial Materials Science and Catalysis. , 1999, Angewandte Chemie.

[53]  Howard Turner,et al.  Kombinatorische Materialforschung und Katalyse , 1999 .

[54]  David E. Clark,et al.  Evolutionary Algorithms in Molecular Design , 1999 .

[55]  M. Shapiro,et al.  NMR Methods Utilized in Combinatorial Chemistry Research , 1999 .

[56]  M. T. Reetz,et al.  KINETISCHE EINFLUSSE AUF DIE ENANTIOSELEKTIVITAT VON NICHTDIASTEREOMERENREINEN KATALYSATORMISCHUNGEN , 1999 .

[57]  Neugebauer,et al.  Kinetic Influences on Enantioselectivity for Non-Diastereopure Catalyst Mixtures. , 1999, Angewandte Chemie.

[58]  A. Plückthun,et al.  Beyond binding: using phage display to select for structure, folding and enzymatic activity in proteins. , 1999, Current opinion in structural biology.

[59]  U. Bornscheuer,et al.  Directed Evolution of an Esterase from Pseudomonas fluorescens. Random Mutagenesis by Error-Prone PCR or a Mutator Strain and Identification of Mutants Showing Enhanced Enantioselectivity by a Resorufin-Based Fluorescence Assay , 1999, Biological chemistry.

[60]  D. Blackmond,et al.  Comprehensive Kinetic Screening of Catalysts Using Reaction Calorimetry , 1999 .

[61]  Michael Becker,et al.  Eine Methode zum High‐Throughput‐Screening von enantioselektiven Katalysatoren , 1999 .

[62]  Gary Siuzdak,et al.  Measurement of Enantiomeric Excess by Kinetic Resolution and Mass Spectrometry. , 1999, Angewandte Chemie.

[63]  Manfred T Reetz,et al.  A Method for High-Throughput Screening of Enantioselective Catalysts. , 1999, Angewandte Chemie.

[64]  Gary Siuzdak,et al.  BESTIMMUNG VON ENANTIOMERENUBERSCHUSSEN DURCH KINETISCHE RACEMATSPALTUNG UND MASSENSPEKTROMETRIE , 1999 .

[65]  E. Yeung,et al.  Multiplexed capillary zone electrophoresis and micellar electrokinetic chromatography with internal standardization. , 1999, Analytical chemistry.

[66]  U. Bornscheuer,et al.  A colorimetric assay suitable for screening epoxide hydrolase activity , 1999 .

[67]  Christoph Heller,et al.  A fully automated multicapillary electrophoresis device for DNA analysis , 1999 .

[68]  Clinton A. Krueger,et al.  Ti-Catalyzed Enantioselective Addition of Cyanide to Imines. A Practical Synthesis of Optically Pure α-Amino Acids , 1999 .

[69]  W. F. Maier Kombinatorische Chemie – Herausforderung und Chance für die Entwicklung neuer Katalysatoren und Materialien , 1999 .

[70]  W. Maier,et al.  Combinatorial Chemistry-Challenge and Chance for the Development of New Catalysts and Materials. , 1999, Angewandte Chemie.

[71]  Scott J. Miller,et al.  A Chemosensor-Based Approach to Catalyst Discovery in Solution and on Solid Support , 1999 .

[72]  M. Myrick,et al.  Simultaneous enantiomeric determination of dansyl-D,L-phenylalanine by fluorescence spectroscopy in the presence of alpha-acid glycoprotein. , 1999, Analytical chemistry.

[73]  M. Francis,et al.  Discovery of Novel Catalysts for Alkene Epoxidation from Metal-Binding Combinatorial Libraries. , 1999, Angewandte Chemie.

[74]  Eric N. Jacobsen,et al.  ENTDECKUNG NEUER KATALYSATOREN FUR DIE ALKENEPOXIDIERUNG DURCH METALLBINDENDE KOMBINATORISCHE BIBLIOTHEKEN , 1999 .

[75]  J. Reymond,et al.  Enantioselective Fluorogenic Assay of Acetate Hydrolysis for Detecting Lipase Catalytic Antibodies , 1999 .

[76]  J. Reymond,et al.  A General Fluorogenic Assay for Catalysis Using Antibody Sensors , 1999 .

[77]  K. Mikami,et al.  Super High Throughput Screening (SHTS) of Chiral Ligands and Activators: Asymmetric Activation of Chiral Diol-Zinc Catalysts by Chiral Nitrogen Activators for the Enantioselective Addition of Diethylzinc to Aldehydes. , 1999, Angewandte Chemie.

[78]  Kuiling Ding,et al.  Super‐High‐Throughput‐Screening chiraler Liganden und Aktivatoren: asymmetrische Aktivierung chiraler Diol‐Zink‐Katalysatoren durch chirale Stickstoffaktivatoren für die enantioselektive Addition von Diethylzink an Aldehyde , 1999 .

[79]  T. Bein Effiziente Assays für kombinatorische Methoden zur Entdeckung von Katalysatoren , 1999 .

[80]  T. Bein Efficient Assays for Combinatorial Methods for the Discovery of Catalysts. , 1999, Angewandte Chemie.

[81]  Y. Kubo BINAPHTHYL-APPENDED CHROMOGENIC RECEPTORS : SYNTHESIS AND APPLICATION TO THEIR COLORIMETRIC RECOGNITION OF AMINES , 1999 .

[82]  M. Reetz,et al.  New Diphosphite Ligands for Catalytic Asymmetric Hydrogenation: The Crucial Role of Conformationally Enantiomeric Diols , 1999 .

[83]  M. T. Reetz,et al.  Neue Diphosphitliganden für die katalytische asymmetrische Hydrierung: die entscheidende Rolle von konformationsenantiomeren Diolen , 1999 .

[84]  Albrecht Berkessel,et al.  Identifizierung von Peptid‐Zirconium‐Komplexen, die die Phosphathydrolyse beschleunigen, durch „On‐bead‐screening”︁ einer kombinatorischen Undecapeptid‐Bibliothek , 1999 .

[85]  A. Berkessel,et al.  Discovery of Peptide–Zirconium Complexes That Mediate Phosphate Hydrolysis by Batch Screening of a Combinatorial Undecapeptide Library , 1999 .

[86]  S. Bromidge,et al.  A parallel combinatorial approach to locating homochiral Lewis acid catalysts for the asymmetric aza-Diels-Alder reaction of an imino dienophile , 1998 .

[87]  R. Kazlauskas,et al.  QUANTITATIVE SCREENING OF HYDROLASE LIBRARIES USING PH INDICATORS: IDENTIFYING ACTIVE AND ENANTIOSELECTIVE HYDROLASES , 1998 .

[88]  Hans-Werner Schmidt,et al.  Detection of Catalytic Activity in Combinatorial Libraries of Heterogeneous Catalysts by IR Thermography. , 1998, Angewandte Chemie.

[89]  Manfred T Reetz,et al.  Time-Resolved IR-Thermographic Detection and Screening of Enantioselectivity in Catalytic Reactions. , 1998, Angewandte Chemie.

[90]  Wilhelm F. Maier,et al.  IR‐thermographische Erkennung katalytischer Aktivität in kombinatorischen Bibliotheken heterogener Katalysatoren , 1998 .

[91]  Michael Becker,et al.  Zeitaufgelöste IR‐thermographische Detektion und Screening von enantioselektiven katalytischen Reaktionen , 1998 .

[92]  K. Shimizu,et al.  High‐Throughput Strategies for the Discovery of Catalysts , 1998 .

[93]  M. Drysdale,et al.  Parallel synthesis techniques in the identification of new chiral dirhodium(II) carboxylates for asymmetric carbenoid insertion reactions , 1998 .

[94]  Robert Schlögl,et al.  Combinatorial Chemistry in Heterogeneous Catalysis: A New Scientific Approach or "the King's New Clothes"? , 1998, Angewandte Chemie.

[95]  H. Kagan New screening methodologies or combinatorial chemistry applied to asymmetric catalysts , 1998 .

[96]  R. Schlögl,et al.  Kombinatorische Chemie in der heterogenen Katalyse: ein neuer wissenschaftlicher Ansatz oder „des Kaisers neue Kleider”︁? , 1998 .

[97]  W. C. Still,et al.  ENANTIOSELECTIVE RESOLVING RESINS FROM A COMBINATORIAL LIBRARY. KINETIC RESOLUTION OF CYCLIC AMINO ACID DERIVATIVES , 1998 .

[98]  A. Hoveyda Catalyst discovery through combinatorial chemistry. , 1998, Chemistry & biology.

[99]  S. Ceccarelli,et al.  Investigation of a New Family of Chiral Ligands for Enantioselective Catalysis via Parallel Synthesis and High-Throughput Screening , 1998 .

[100]  K. Burgess,et al.  Application of novel phosphine oxazoline ligands in asymmetric allylations of 4-acyloxy-2-pentene derivatives , 1998 .

[101]  C. Culbertson,et al.  Microchip Structures for Submillisecond Electrophoresis , 1998 .

[102]  M. Reetz,et al.  Overexpression, immobilization and biotechnological application of Pseudomonas lipases. , 1998, Chemistry and physics of lipids.

[103]  T. Jamison,et al.  Combinatorial libraries of transition-metal complexes, catalysts and materials. , 1998, Current opinion in chemical biology.

[104]  Eric N. Jacobsen,et al.  SCHIFF BASE CATALYSTS FOR THE ASYMMETRIC STRECKER REACTION IDENTIFIED AND OPTIMIZED FROM PARALLEL SYNTHETIC LIBRARIES , 1998 .

[105]  J. Morken,et al.  Thermographic selection of effective catalysts from an encoded polymer-bound library , 1998, Science.

[106]  F. Arnold Design by Directed Evolution , 1998 .

[107]  B. Chankvetadze Capillary Electrophoresis in Chiral Analysis , 1997 .

[108]  M. T. Reetz,et al.  Erzeugung enantioselektiver Biokatalysatoren für die Organische Chemie durch In‐vitro‐Evolution , 1997 .

[109]  Marc Reisch,et al.  Allied Colloids tries to fend off Hercules , 1997 .

[110]  K. Shimizu,et al.  SEARCH FOR CHIRAL CATALYSTS THROUGH LIGAND DIVERSITY : SUBSTRATE-SPECIFIC CATALYSTS AND LIGAND SCREENING ON SOLID PHASE , 1997 .

[111]  Ken D. Shimizu,et al.  Suche nach chiralen Katalysatoren durch Ligandenvielfalt: substratspezifische Katalysatoren und Screening von Liganden an fester Phase , 1997 .

[112]  M. Tokunaga,et al.  Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. , 1997, Science.

[113]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[114]  F. Arnold,et al.  Combinatorial protein design: strategies for screening protein libraries. , 1997, Current opinion in structural biology.

[115]  Romas J. Kazlauskas,et al.  Quick E. A Fast Spectrophotometric Method To Measure the Enantioselectivity of Hydrolases , 1997 .

[116]  J. Bäckvall,et al.  Enzymatic Resolution of Alcohols Coupled with Ruthenium‐Catalyzed Racemization of the Substrate Alcohol , 1997 .

[117]  Jan-E. Bäckvall,et al.  ENZYMATISCHE RACEMATSPALTUNG VON ALKOHOLEN GEKOPPELT MIT RUTHENIUM-KATALYSIERTER RACEMISIERUNG DES SUBSTRAT-ALKOHOLS , 1997 .

[118]  Ron Dagani,et al.  Evidence for novel origin-of-life theory , 1997 .

[119]  H. Nestler,et al.  Combinatorial Libraries: Studies in Molecular Recognition and the Quest for New Catalysts , 1997 .

[120]  Jack W. Szostak,et al.  Introduction: Combinatorial Chemistry. , 1997, Chemical reviews.

[121]  K. Mikami,et al.  Importance of chiral activators in the asymmetric catalysis of Diels-Alder reactions by chiral titanium(IV) complexes , 1997 .

[122]  J Fastrez,et al.  In vivo versus in vitro screening or selection for catalytic activity in enzymes and abzymes , 1997, Molecular biotechnology.

[123]  Manfred T. Reetz,et al.  Creation of Enantioselective Biocatalysts for Organic Chemistry by In Vitro Evolution , 1997 .

[124]  Dan Luss,et al.  Infrared Thermographic Screening of Combinatorial Libraries of Heterogeneous Catalysts , 1996 .

[125]  C. Zechel,et al.  Combinatorial Synthesis of Small Organic Molecules , 1996 .

[126]  Friedhelm Balkenhohl,et al.  KOMBINATORISCHE SYNTHESE NIEDERMOLEKULARER ORGANISCHER VERBINDUNGEN , 1996 .

[127]  Shuj Kobayashi,et al.  A New Methodology for Combinatorial Synthesis. Preparation of Diverse Quinoline Derivatives Using a Novel Polymer-Supported Scandium Catalyst , 1996 .

[128]  M. Francis,et al.  Combinatorial Approach to the Discovery of Novel Coordination Complexes , 1996 .

[129]  Ken D. Shimizu,et al.  ENTWICKLUNG VON CHIRALEN KATALYSATOREN DURCH KOMBINATORISCHE LIGANDENVARIATION : TI-KATALYSIERTE ENANTIOSELEKTIVE ADDITION VON TMSCN AN MESO-EPOXIDE , 1996 .

[130]  F. Arnold,et al.  Engineering new functions and altering existing functions. , 1996, Current opinion in structural biology.

[131]  K. Shimizu,et al.  Discovery of Chiral Catalysts through Ligand Diversity: Ti‐Catalyzed Enantioselective Addition of TMSCN to meso Epoxides , 1996 .

[132]  B. Trost,et al.  ON THE QUESTION OF ASYMMETRIC INDUCTION WITH ACYCLIC ALLYLIC SUBSTRATES. AN ASYMMETRIC SYNTHESIS OF (+)-POLYOXAMIC ACID , 1996 .

[133]  Kevin Burgess,et al.  New Catalysts and Conditions for a CH Insertion Reaction Identified by High Throughput Catalyst Screening , 1996 .

[134]  G. Jung,et al.  Organic Chemistry on Solid Supports , 1996 .

[135]  Kevin Burgess,et al.  Durch Screening ermittelte Katalysatoren und Reaktionsbedingungen für eine C‐H‐Insertionsreaktion , 1996 .

[136]  G. Jung,et al.  Organische Chemie an fester Phase , 1996 .

[137]  G. Sheldrake,et al.  Developments in the commercial manufacture and applications of optically active compounds , 1995 .

[138]  J. Ellman,et al.  A General Solid-Phase Synthesis Strategy for the Preparation of 2-Pyrrolidinemethanol Ligands , 1995 .

[139]  Klaus Gubernator,et al.  Optimization of the Biological Activity of Combinatorial Compound Libraries by a Genetic Algorithm , 1995 .

[140]  Lutz Weber,et al.  Optimierung der biologischen Aktivität von kombinatorischen Verbindungsbibliotheken durch einen genetischen Algorithmus , 1995 .

[141]  A. V. Eliseev,et al.  Phosphatase Catalysis Developed via Combinatorial Organic Chemistry , 1995 .

[142]  R. Lerner,et al.  From molecular diversity to catalysis: lessons from the immune system. , 1995, Science.

[143]  D. J. Berrisford,et al.  Ligand‐Accelerated Catalysis , 1995 .

[144]  G. Sulikowski,et al.  ENANTIOSELECTIVE SYNTHESIS OF A 1,2-DISUBSTITUTED MITOSENE BY A COPPER-CATALYZED INTRAMOLECULAR CARBON-HYDROGEN INSERTION REACTION OF A DIAZO ESTER , 1995 .

[145]  M. Reetz,et al.  Efficient Heterogeneous Biocatalysts by Entrapment of Lipases in Hydrophobic Sol–Gel Materials , 1995 .

[146]  K. Achiwa,et al.  INVERSION OF ENANTIOSELECTIVITY IN HYDROLYSIS OF 1,4-DIHYDROPYRIDINES BY POINT MUTATION OF LIPASE PS , 1995 .

[147]  M. T. Reetz,et al.  Effiziente heterogene Biokatalysatoren durch den Einschluß von Lipasen in hydrophoben Sol‐gel‐Materialien , 1995 .

[148]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[149]  D. Hilvert,et al.  Monitoring Catalytic Activity by Immunoassay: Implications for Screening , 1994 .

[150]  D. Belder,et al.  Chiral separations of basic and acidic compounds in modified capillaries using cyclodextrin-modified capillary zone electrophoresis , 1994 .

[151]  J. Michael Ramsey,et al.  Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices , 1994 .

[152]  A. W. Czarnik,et al.  Fluorescent chemosensors for ion and molecule recognition , 1993 .

[153]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[154]  I. Ojima,et al.  Catalytic Asymmetric Synthesis , 1993 .

[155]  A. Mannschreck On-line measurement of circular dichroism spectra during enantioselective liquid chromatography , 1993 .

[156]  Satoshi Takahashi,et al.  Multiple-sheathflow capillary array DNA analyser , 1993, Nature.

[157]  Dan S. Tawfik,et al.  catELISA: a facile general route to catalytic antibodies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[158]  R A Mathies,et al.  DNA sequencing using capillary array electrophoresis. , 1992, Analytical chemistry.

[159]  G. F. Joyce,et al.  Randomization of genes by PCR mutagenesis. , 1992, PCR methods and applications.

[160]  J. Mattay,et al.  GROUND-STATE AND EXCITED-STATE ASSOCIATION - CHIRAL RECOGNITION BETWEEN 2,2'-DIHYDROXY-1,1'-BINAPHTHYL AND AMINES , 1992 .

[161]  Hideyo Takahashi,et al.  A catalytic enantioselective reaction using a C2-symmetric disulfonamide as a chiral ligand: Alkylation of aldehydes catalyzed by disulfonamide-Ti(O-i-Pr)4-Dialkyl zinc system , 1992 .

[162]  S. Terabe,et al.  Chiral separation by cyclodextrin-modified micellar electrokinetic chromatography , 1991 .

[163]  S. Snyder,et al.  Chiral discrimination in electronic energy-transfer processes between dissymmetric metal complexes in solution. Time-resolved chiroptical luminescence measurements of enantioselective excited-state quenching kinetics , 1990 .

[164]  Royston M. Roberts,et al.  Serendipity: Accidental Discoveries in Science , 1989 .

[165]  D. Estell,et al.  Subtilisin--an enzyme designed to be engineered. , 1988, Trends in biochemical sciences.

[166]  S. Ebel DC unter Druck. Einführung in die HPPLC. Von R. E. Kaiser. Dr. Alfred Hüthig Verlag, Heidelberg 1987. 256 S., 90 Abb., DM 96,‐. ISBN 3‐7785‐1563‐2 , 1988 .

[167]  S. Benkovic,et al.  Insights into enzyme function from studies on mutants of dihydrofolate reductase. , 1988, Science.

[168]  J. Gerlt Relationships between enzymatic catalysis and active site structure revealed by applications of site-directed mutagenesis , 1987 .

[169]  G. Georgiades,et al.  IR‐Emissionsanalyse der Temperaturprofile von Pt/SiO2‐Katalysatoren bei exothermen Reaktionen , 1987 .

[170]  P. Sermon,et al.  IR Emission Analysis of Temperature Profiles in Pt/SiO2 Catalysts during Exothermic Reactions , 1987 .

[171]  J. Knowles Tinkering with enzymes: what are we learning? , 1987, Science.

[172]  R. Zare,et al.  Electrokinetic Separation of Chiral Compounds , 1985, Science.

[173]  K. Günther,et al.  Thin-layer chromatographic enantiomeric resolution via ligand exchange. , 1984, Journal of chromatography.

[174]  A. Drake,et al.  Simultaneous monitoring of ligh-absorption and optical activity in the liquid chromatography of chiral substance , 1980 .

[175]  Carl Hütter Aussichten der Braunkohlen‐Knorpeltrocknung und ihre wirtschaftliche Bedeutung , 1925 .

[176]  M. Reetz,et al.  Circular dichroism as a detection method in the screening of enantioselective catalysts. , 2000, Chirality.

[177]  H. Schoemaker,et al.  IR spectroscopy as a high-throughput screening-technique for enantioselective hydrogen-transfer catalysts , 2000 .

[178]  Sam F. Y. Li,et al.  High‐speed chiral separations on microchip electrophoresis devices , 2000, Electrophoresis.

[179]  K. Kudo,et al.  Optical rotation per refractive index unit, or enantiomeric (e) factor, for screening enantioselective catalysts through asymmetric activation or carbohydrates. , 2000, Chirality.

[180]  M. Reetz,et al.  Superior Biocatalysts by Directed Evolution , 1999 .

[181]  Thomas Maschmeyer,et al.  Combinatorial chemistry, high‐speed screening and catalysis , 1999 .

[182]  Günther Jung,et al.  Combinatorial chemistry : synthesis, analysis, screening , 1999 .

[183]  D. Diamond,et al.  Chiral resolution of the enantiomers of phenylglycinol using (S)-di-naphthylprolinol calix[4]arene by capillary electrophoresis and fluorescence spectroscopy , 1998 .

[184]  Friedhelm Balkenhohl,et al.  Optisch aktive Amine durch Lipase-katalysierte Methoxyacetylierung† , 1997 .

[185]  N. Dovichi DNA sequencing by capillary electrophoresis , 1997, Electrophoresis.

[186]  A. Hermetter,et al.  Enantiomeric perylene-glycerolipids as fluorogenic substrates for a dual wavelength assay of lipase activity and stereoselectivity. , 1996, Chirality.

[187]  C. Wandrey,et al.  Medium Optimization by Genetic Algorithm for Continuous Production of Formate Dehydrogenase , 1995 .

[188]  R. Noyori,et al.  Asymmetric catalysis in organic synthesis , 1994 .

[189]  H. Brunner,et al.  Handbook of enantioselective catalysis: With transition metal compounds , 1993 .

[190]  W. König Gas chromatographic enantiomer separation with modified cyclodextrins , 1992 .

[191]  C. Rosini,et al.  Circular dichroism detection in HPLC , 1991 .

[192]  A. Horeau,et al.  Micromethode de determination de la configuration des alcools secondaires par dedoublement cinetique. Emploi de la spectrographie de masse , 1990 .

[193]  Hideyo Takahashi,et al.  Enantioselective alkylation of aldehyde catalyzed by disulfonamide-Ti(O-i-Pr)4-dialkyl zinc system , 1989 .

[194]  S. Fanali Separation of optical isomers by capillary zone electrophoresis based on host-guest complexation with cyclodextrins , 1989 .

[195]  D. Goeddel,et al.  A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction , 1989 .

[196]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[197]  A. Paulus,et al.  Use of complexing agents for selective separation in high-performance capillary electrophoresis: Chiral resolution via cyclodextrins incorporated within polyacrylamide gel columns , 1988 .