Subcritical Sevastyanov branching processes with nonhomogeneous Poisson immigration

We consider a class of Sevastyanov branching processes with non-homogeneous Poisson immigration. These processes relax the assumption required by the Bellman-Harris process which imposes the lifespan and offspring of each individual to be independent. They find applications in studies of the dynamics of cell populations. In this paper, we focus on the subcritical case and examine asymptotic properties of the process. We establish limit theorems, which generalize classical results due to Sevastyanov and others. Our key findings include novel LLN and CLT which emerge from the non-homogeneity of the immigration process.

[1]  Ollivier Hyrien,et al.  Modeling Cell Kinetics using Branching Processes with Non-Homogeneous Poisson Immigration. , 2010, Comptes rendus de l'Academie Bulgare des sciences : sciences mathematiques et naturelles.

[2]  O. Hyrien,et al.  Stochastic modeling of stress erythropoiesis using a two-type age-dependent branching process with immigration , 2014, Journal of Mathematical Biology.

[3]  Nikolay M. Yanev,et al.  Age and residual lifetime distributions for branching processes , 2007 .

[4]  A. Pakes,et al.  Limit theorems for an age-dependent branching process with immigration , 1972 .

[5]  M Noble,et al.  Saddlepoint approximations to the moments of multitype age-dependent branching processes, with applications. , 2010, Biometrics.

[6]  Ollivier Hyrien,et al.  Stochastic modeling of oligodendrocyte generation in cell culture: model validation with time-lapse data , 2006, Theoretical Biology and Medical Modelling.

[7]  Ollivier Hyrien,et al.  A Stochastic Model to Analyze Clonal Data on Multi‐Type Cell Populations , 2005, Biometrics.

[8]  Ollivier Hyrien,et al.  Sevastyanov branching processes with non-homogeneous Poisson immigration , 2013, Proceedings of the Steklov Institute of Mathematics.

[9]  Ollivier Hyrien,et al.  Integrated Systems and Technologies : Mathematical Oncology Mathematical and Experimental Approaches to Identify and Predict the Effects of Chemotherapy on Neuroglial Precursors , 2010 .

[10]  P. Jagers,et al.  Age-Dependent Branching Processes Allowing Immigration , 1968 .

[11]  B. A. Sevast'yanov Limit Theorems for Age-Dependent Branching Processes , 1968 .

[12]  Norman Kaplan,et al.  Supercritical age-dependent branching processes with immigration , 1974 .

[13]  Peter Olofsson General branching processes with immigration , 1996 .

[14]  B. A. Sevast'yanov Age-Dependent Branching Processes , 1964 .

[15]  Kosto V. Mitov,et al.  Critical Bellman–Harris branching processes with infinite variance allowing state-dependent immigration , 2002 .

[16]  Rui Chen,et al.  A composite likelihood approach to the analysis of longitudinal clonal data on multitype cellular systems under an age-dependent branching process. , 2011, Biostatistics.

[17]  Ollivier Hyrien,et al.  A test of homogeneity for age-dependent branching processes with immigration. , 2015, Electronic journal of statistics.

[18]  H. Kesten,et al.  Limit theorems for decomposable multi-dimensional Galton-Watson processes , 1967 .

[19]  J. Radcliffe,et al.  The convergence of a super-critical age-dependent branching process allowing immigration at the epochs of a renewal process , 1972 .

[20]  Andrei Yakovlev,et al.  Branching stochastic processes with immigration in analysis of renewing cell populations. , 2006, Mathematical biosciences.

[21]  N. M. Yanev,et al.  BELLMAN-HARRIS BRANCHING PROCESSES WITH A SPECIAL TYPE OF STATE-DEPENDENT IMMIGRATION , 1989 .

[22]  N. M. Yanev,et al.  BELLMAN-HARRIS BRANCHING PROCESSES WITH STATE-DEPENDENT IMMIGRATION , 1985 .

[23]  Kosto V. Mitov,et al.  Sevastyanov branching processes with non-homogeneous Poisson immigration , 2013 .