High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue

[1]  Patrik L. Ståhl,et al.  High-definition spatial transcriptomics for in situ tissue profiling , 2019, Nature Methods.

[2]  Jeffrey M. Perkel,et al.  Starfish enterprise: finding RNA patterns in single cells , 2019, Nature.

[3]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[4]  D. Burgess Spatial transcriptomics coming of age , 2019, Nature Reviews Genetics.

[5]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[6]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[7]  J. Marioni,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[8]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[9]  A. Butte,et al.  Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage , 2018, Nature Immunology.

[10]  Edouard Bertrand,et al.  A Growing Toolbox to Image Gene Expression in Single Cells: Sensitive Approaches for Demanding Challenges. , 2018, Molecular cell.

[11]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[12]  B. Stecher,et al.  Spatially Correlated Gene Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell Interactions. , 2018, Cell systems.

[13]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[14]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[15]  Chris Armit,et al.  eHistology image and annotation data from the Kaufman Atlas of Mouse Development , 2017, GigaScience.

[16]  Joel Sjöstrand,et al.  ST Pipeline: an automated pipeline for spatial mapping of unique transcripts , 2017, Bioinform..

[17]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[18]  D. Duboule,et al.  Embryonic timing, axial stem cells, chromatin dynamics, and the Hox clock , 2017, Genes & development.

[19]  Alexander Medvinsky,et al.  Human haematopoietic stem cell development: from the embryo to the dish , 2017, Development.

[20]  S. Teichmann,et al.  SpatialDE: identification of spatially variable genes , 2018, Nature Methods.

[21]  A. Oshlack,et al.  Gene length and detection bias in single cell RNA sequencing protocols , 2017, bioRxiv.

[22]  John R. Haliburton,et al.  Abseq: Ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding , 2017, Scientific Reports.

[23]  R. Baldock,et al.  eMouseAtlas: An atlas-based resource for understanding mammalian embryogenesis , 2017, Developmental biology.

[24]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[25]  R. Lehmann,et al.  mRNA quantification using single-molecule FISH in Drosophila embryos , 2016, Nature Protocols.

[26]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[27]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[28]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[29]  Richard L. Mort,et al.  The melanocyte lineage in development and disease , 2015, Development.

[30]  Kun Zhang,et al.  Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues , 2015, Nature Protocols.

[31]  D. Pe’er,et al.  Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands , 2015, Proceedings of the National Academy of Sciences.

[32]  Emmanuel Delamarche,et al.  Lab-on-a-chip devices , 2015 .

[33]  Z. Szallasi,et al.  Spatial and temporal diversity in genomic instability processes defines lung cancer evolution , 2014, Science.

[34]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[35]  D. Scadden Nice Neighborhood: Emerging Concepts of the Stem Cell Niche , 2014, Cell.

[36]  Yu Wu,et al.  High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. , 2013, Analytical chemistry.

[37]  L. Pevny,et al.  Eye development and retinogenesis. , 2012, Cold Spring Harbor perspectives in biology.

[38]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[39]  L. Gervais,et al.  Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. , 2009, Lab on a chip.

[40]  Karla E. Hirokawa,et al.  Lhx2 links the intrinsic and extrinsic factors that control optic cup formation , 2009, Development.

[41]  E. Marcotte,et al.  Global signatures of protein and mRNA expression levelsw , 2009 .

[42]  R. Lang,et al.  Stage-dependent modes of Pax6-Sox2 epistasis regulate lens development and eye morphogenesis , 2009, Development.

[43]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[44]  J. Slack,et al.  Origin of Stem Cells in Organogenesis , 2008, Science.

[45]  J. Baker,et al.  Genomic analysis of gastrulation and organogenesis in the mouse. , 2007, Developmental cell.

[46]  Carsten Schultz,et al.  Live-Cell Imaging of Enzyme-Substrate Interaction Reveals Spatial Regulation of PTP1B , 2007, Science.

[47]  P. Chambon,et al.  Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells , 2005, Development.

[48]  E. Fuchs,et al.  Socializing with the Neighbors Stem Cells and Their Niche , 2004, Cell.

[49]  Qin Chen,et al.  BMP signaling is required for development of the ciliary body. , 2002, Development.

[50]  D. Barton,et al.  A melanocyte-specific gene, Pmel 17, maps near the silver coat color locus on mouse chromosome 10 and is in a syntenic region on human chromosome 12. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[51]  H. Jäckle,et al.  Spatial and temporal patterns of Krüppel gene expression in early Drosophila embryos , 1985, Nature.