Technical specification IEC TS 62989:2018 – Primary optics for concentrator photovoltaic systems

The first edition of the Technical Specification (TS) on Primary Optics for Concentrator Photovoltaic (CPV) Systems, IEC TS 62989:2018, has been published by the International Electrotechnical Commission (IEC), on March 8th, 2018. TS 62989 covers aspects related to the primary optics including: product identification, optical characteristics, mechanical characteristics, materials, (design) geometry, and visual appearance. This paper focuses on the key aspects of the norm, including optical performance, in order to promote the awareness and use of the standard. We describe the three methods intended to measure the key optical characteristics of the primary elements, i.e. focal spot size and optical efficiency, by using the encircled energy. The three methods are using different light sources, optical components and receiver sensors, but yielded very similar results in a round robin test. This justifies the continued use of all three methods. The use of a website (opticstests.pbworks.com) for documentation of discussions and references was novel to the standard development. The website proved to be useful for the introduction of new members of the group. The website helped to keep track of changes to the document as well as the required actions of the project team.The first edition of the Technical Specification (TS) on Primary Optics for Concentrator Photovoltaic (CPV) Systems, IEC TS 62989:2018, has been published by the International Electrotechnical Commission (IEC), on March 8th, 2018. TS 62989 covers aspects related to the primary optics including: product identification, optical characteristics, mechanical characteristics, materials, (design) geometry, and visual appearance. This paper focuses on the key aspects of the norm, including optical performance, in order to promote the awareness and use of the standard. We describe the three methods intended to measure the key optical characteristics of the primary elements, i.e. focal spot size and optical efficiency, by using the encircled energy. The three methods are using different light sources, optical components and receiver sensors, but yielded very similar results in a round robin test. This justifies the continued use of all three methods. The use of a website (opticstests.pbworks.com) for documentation ...