An Ensemble-Based Probabilistic Score Approach to Compare Observation Scenarios: An Application to Biogeochemical-Argo Deployments

AbstractA cross-validation algorithm is developed to perform probabilistic observing system simulation experiments (OSSEs). The use of a probability distribution of “true” states is considered rath...

[1]  Andreas Schiller,et al.  Synthesis of new scientific challenges for GODAE OceanView , 2015 .

[2]  Jean-Michel Brankart,et al.  Stochastic estimation of biogeochemical parameters from Globcolour ocean colour satellite data in a North Atlantic 3D ocean coupled physical–biogeochemical model , 2013 .

[3]  T. Hamill Interpretation of Rank Histograms for Verifying Ensemble Forecasts , 2001 .

[4]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[5]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[6]  Baptiste Mourre,et al.  Relative performance of future altimeter systems and tide gauges in constraining a model of North Sea high-frequency barotropic dynamics , 2006 .

[7]  Hervé Claustre,et al.  Bringing Biogeochemistry into the Argo Age , 2016 .

[8]  Simona Masina,et al.  Requirements for an Integrated in situ Atlantic Ocean Observing System From Coordinated Observing System Simulation Experiments , 2019, Front. Mar. Sci..

[9]  Gabriel A. Vecchi,et al.  Evaluation of tropical Pacific observing systems using NCEP and GFDL ocean data assimilation systems , 2017, Climate Dynamics.

[10]  Guillem Candille,et al.  A generic approach to explicit simulation of uncertainty in the NEMO ocean model , 2015 .

[11]  Craig H. Bishop,et al.  The GIGG‐EnKF: ensemble Kalman filtering for highly skewed non‐negative uncertainty distributions , 2016 .

[12]  Simon T. K. Lang,et al.  Stochastic representations of model uncertainties at ECMWF: state of the art and future vision , 2017 .

[13]  Riccardo Benedetti,et al.  Scoring Rules for Forecast Verification , 2010 .

[14]  Rosa Barciela,et al.  Global marine biogeochemical reanalyses assimilating two different sets of merged ocean colour products , 2017 .

[15]  Mingjing Tong,et al.  An OSSE Framework Based on the Ensemble Square Root Kalman Filter for Evaluating the Impact of Data from Radar Networks on Thunderstorm Analysis and Forecasting , 2006 .

[16]  Robert Atlas,et al.  Future Observing System Simulation Experiments , 2016 .

[17]  Baptiste Mourre,et al.  Contribution of a Wide-Swath Altimeter in a Shelf Seas Assimilation System: Impact of the Satellite Roll Errors , 2008 .

[18]  Robert Atlas,et al.  OSSE impact analysis of airborne ocean surveys for improving upper-ocean dynamical and thermodynamical forecasts in the Gulf of Mexico , 2015 .

[19]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[20]  Clifford H. Dey,et al.  Observing-Systems Simulation Experiments: Past, Present, and Future , 1986 .

[21]  Christoph Waldmann,et al.  More Integrated and More Sustainable Atlantic Ocean Observing (AtlantOS) , 2015 .

[22]  E. Dombrowsky,et al.  An introduction to GODAE OceanView , 2015 .

[23]  James R. Montgomery,et al.  A Generic Approach , 1989 .

[24]  Riccardo Peirolo,et al.  Information gain as a score for probabilistic forecasts , 2011 .

[25]  Jean-Michel Brankart,et al.  Towards an improved description of ocean uncertainties: effect of local anamorphic transformations on spatial correlations , 2011 .

[26]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[27]  Robert J. W. Brewin,et al.  Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations , 2018 .

[28]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .

[29]  B. Mourre,et al.  Cooperation or Coordination of Underwater Glider Networks? An Assessment from Observing System Simulation Experiments in the Ligurian Sea , 2014 .

[30]  H. Hersbach Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems , 2000 .

[31]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[32]  Robert Atlas,et al.  North Atlantic Ocean OSSE system: Evaluation of operational ocean observing system components and supplemental seasonal observations for potentially improving tropical cyclone prediction in coupled systems , 2017 .

[33]  P. L. Houtekamer,et al.  Verification of an Ensemble Prediction System against Observations , 2007 .

[34]  Peter R. Oke,et al.  Evaluation of the Tropical Pacific Observing System from the ocean data assimilation perspective , 2015 .

[35]  I. Jolliffe,et al.  Forecast verification : a practitioner's guide in atmospheric science , 2011 .

[36]  Robert Atlas,et al.  Atmospheric Observations and Experiments to Assess Their Usefulness in Data Assimilation , 1997 .

[37]  Gary B. Brassington,et al.  Evaluating the impacts of the tropical Pacific observing system on the ocean analysis fields in the global ocean data assimilation system for operational seasonal forecasts in JMA , 2015 .

[38]  Leonard A. Smith,et al.  Scoring Probabilistic Forecasts: The Importance of Being Proper , 2007 .

[39]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2006 .

[40]  Jean-Michel Brankart,et al.  Efficient Local Error Parameterizations for Square Root or Ensemble Kalman Filters: Application to a Basin-Scale Ocean Turbulent Flow , 2011 .

[41]  Jean-Michel Brankart,et al.  Stochastic estimation of biogeochemical parameters of a 3D ocean coupled physical–biogeochemical model: Twin experiments , 2011 .

[42]  M. Dowd Estimating parameters for a stochastic dynamic marine ecological system , 2011 .

[43]  G. Larnicol,et al.  Assessing the impact of observations on ocean forecasts and reanalyses: Part 2, Regional applications , 2015 .

[44]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[45]  Robert Atlas,et al.  Observing System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction , 2015 .

[46]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[47]  Jean-Michel Brankart,et al.  Efficient Adaptive Error Parameterizations for Square Root or Ensemble Kalman Filters: Application to the Control of Ocean Mesoscale Signals , 2010 .

[48]  S. Maritorena,et al.  Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues , 2010 .

[49]  Patrick Marsaleix,et al.  Assessment of observational networks with the Representer Matrix Spectra method—application to a 3D coastal model of the Bay of Biscay , 2009 .

[50]  Christopher Grassotti,et al.  Assessment of the Impact of Simulated Satellite Lidar Wind and Retrieved 183 GHz Water Vapor Observations on a Global Data Assimilation System , 1990 .

[51]  Pierre Brasseur,et al.  Toward a multivariate reanalysis of the North Atlantic Ocean biogeochemistry during 1998-2006 based on the assimilation of SeaWiFS chlorophyll data , 2012 .

[52]  Robert Atlas,et al.  Simulation studies of the impact of future observing systems on weather prediction , 1985 .

[53]  G. Madec NEMO ocean engine , 2008 .

[54]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[55]  Jean-Michel Brankart,et al.  Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis , 2010 .

[56]  Robert Atlas,et al.  Rigorous Evaluation of a Fraternal Twin Ocean OSSE System for the Open Gulf of Mexico , 2014 .

[57]  Susan Kay,et al.  The Assimilation of Phytoplankton Functional Types for Operational Forecasting in the Northwest European Shelf , 2018, Journal of Geophysical Research: Oceans.

[58]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[59]  Stefano Ciavatta,et al.  Can ocean color assimilation improve biogeochemical hindcasts in shelf seas , 2011 .

[60]  Robert Atlas,et al.  Impact Of Satellite Temperature Sounding And Wind Data On Numerical Weather Prediction , 1985 .

[61]  mith,et al.  Evaluating Probabilistic Forecasts Using Information Theory , 2002 .

[62]  Guillem Candille,et al.  Assessment of an ensemble system that assimilates Jason-1/Envisat altimeter data in a probabilistic model of the North Atlantic ocean circulation , 2014 .

[63]  Jean-Michel Brankart,et al.  Stochastic parameterizations of biogeochemical uncertainties in a 1/4° NEMO/PISCES model for probabilistic comparisons with ocean color data , 2016 .

[64]  A. Longhurst Seasonal cycles of pelagic production and consumption , 1995 .