Performance Improvement of Speech Recognizer in Noisy Environments Based on Auditory Modeling
暂无分享,去创建一个
In this paper, we study a noise-robust feature extraction method of speech signal based on auditory modeling. The auditory model consists of a basilar membrane, a hair cell model and spectrum output stage. Basilar membrane model describes a response characteristic of membrane according to vibration in speech wave, and is represented as a band-pass filter bank. Hair cell model describes a neural transduction according to displacements of the basilar membrane. It responds adaptively to relative values of input and plays an important role for noise-robustness. Spectrum output stage constructs a mean rate spectrum using the average firing rate of each channel. And we extract feature vectors using a mean rate spectrum. Simulation results show that when auditory-based feature extraction is used, the speech recognition performance in noisy environments is improved compared to other feature extraction methods.