The Effects of Bounding Syntactic Resources on Presburger LTL

We study decidability and complexity issues for fragments of LTL with Presburger constraints by restricting the syntactic resources of the formulae (the class of constraints, the number of variables and the distance between two states for which counters can be compared) while preserving the strength of the logical operators. We provide a complete picture refining known results from the literature, in some cases pushing forward the known decidability limits. By way of example, we show that model-checking formulae from LTL with quantifier-free Presburger arithmetic over one-counter automata is only PSPACE-complete. In order to establish the PSPACE upper bound, we show that the nonemptiness problem for Buchi one-counter automata taking values in Z and allowing zero tests and sign tests, is only NLOGSPACE-complete.

[1]  Joël Ouaknine,et al.  On the decidability of metric temporal logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[2]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[3]  Alain Finkel,et al.  How to Compose Presburger-Accelerations: Applications to Broadcast Protocols , 2002, FSTTCS.

[4]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[5]  Javier Esparza,et al.  Reachability Analysis of Pushdown Automata: Application to Model-Checking , 1997, CONCUR.

[6]  Igor Walukiewicz Pushdown Processes: Games and Model-Checking , 2001, Inf. Comput..

[7]  Daniela Rosu,et al.  On validation of XML streams using finite state machines , 2004, WebDB '04.

[8]  Philippe Schnoebelen,et al.  The Complexity of Propositional Linear Temporal Logics in Simple Cases , 1998, Inf. Comput..

[9]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[10]  Véronique Cortier,et al.  Flatness Is Not a Weakness , 2000, CSL.

[11]  Carsten Lutz NEXPTIME-Complete Description Logics with Concrete Domains , 2001, IJCAR.

[12]  Pierre Wolper,et al.  An automata-theoretic approach to branching-time model checking , 2000, JACM.

[13]  Hsu-Chun Yen,et al.  A Multiparameter Analysis of the Boundedness Problem for Vector Addition Systems , 1985, J. Comput. Syst. Sci..

[14]  Zhe Dang,et al.  Presburger liveness verification of discrete timed automata , 2003, Theor. Comput. Sci..

[15]  Etsuji Tomita,et al.  Polynomial Time Identification of Strict Deterministic Restricted One-Counter Automata in Some Class from Positive Data , 2004, ICGI.

[16]  Joël Ouaknine,et al.  Reachability in Succinct and Parametric One-Counter Automata , 2009, CONCUR.

[17]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[18]  John E. Hershey,et al.  Computation , 1991, Digit. Signal Process..

[19]  Faron Moller,et al.  DP lower bounds for equivalence-checking and model-checking of one-counter automata , 2004, Inf. Comput..

[20]  Slawomir Lasota,et al.  Alternating timed automata , 2005, TOCL.

[21]  Alain Finkel,et al.  Decidability of Reachability Problems for Classes of Two Counters Automata , 2000, STACS.

[22]  Deepak D'Souza,et al.  An automata-theoretic approach to constraint LTL , 2002, Inf. Comput..

[23]  Pierre Wolper,et al.  A direct symbolic approach to model checking pushdown systems , 1997, INFINITY.

[24]  J. Berstel,et al.  Context-free languages , 1993, SIGA.

[25]  Stéphane Demri,et al.  Verification of Qualitative Constraints , 2005, CONCUR.

[26]  A. Bouajjani,et al.  On the verification problem of nonregular properties for nonregular processes , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[27]  Javier Esparza,et al.  Model checking LTL with regular valuations for pushdown systems , 2001, Inf. Comput..

[28]  Alain Finkel,et al.  From pointer systems to counter systems using shape analysis , 2006 .

[29]  Philippe Schnoebelen,et al.  Model Checking Timed Automata with One or Two Clocks , 2004, CONCUR.

[30]  Jean-François Condotta,et al.  Computational Complexity of Propositional Linear Temporal Logics Based on Qualitative Spatial or Temporal Reasoning , 2002, FroCoS.

[31]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[32]  Armin Biere,et al.  Bounded model checking , 2003, Adv. Comput..

[33]  Antonín Kucera,et al.  Efficient Verification Algorithms for One-Counter Processes , 2000, ICALP.

[34]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[35]  Pascal Lafourcade,et al.  Intruder Deduction for AC-Like Equational Theories with Homomorphisms , 2005, RTA.

[36]  Stéphane Demri,et al.  The Effects of Bounding Syntactic Resources on Presburger LTL , 2007, 14th International Symposium on Temporal Representation and Reasoning (TIME'07).

[37]  Oscar H. Ibarra,et al.  Conter Machines: Decidable Properties and Applications to Verification Problems , 2000, MFCS.

[38]  Carsten Lutz,et al.  NEXP TIME-complete description logics with concrete domains , 2004, TOCL.

[39]  Olivier Serre,et al.  Parity Games Played on Transition Graphs of One-Counter Processes , 2006, FoSSaCS.

[40]  Paul Gastin,et al.  Satisfiability and Model Checking for MSO-definable Temporal Logics are in PSPACE , 2003, CONCUR.

[41]  Thomas A. Henzinger,et al.  A really temporal logic , 1994, JACM.

[42]  Pierre Wolper,et al.  Reasoning About Infinite Computations , 1994, Inf. Comput..

[43]  Stéphane Demri,et al.  Verification of qualitative Z constraints , 2008, Theor. Comput. Sci..

[44]  Joseph Y. Halpern The Effect of Bounding the Number of Primitive Propositions and the Depth of Nesting on the Complexity of Modal Logic , 1995, Artif. Intell..

[45]  Ahmed Bouajjani,et al.  Automatic verification of recursive procedures with one integer parameter , 2003, Theor. Comput. Sci..

[46]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[47]  Pierre Wolper Temporal Logic Can Be More Expressive , 1983, Inf. Control..