Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation

In this article, a decoupled fully discrete scheme for solving 2D magnetohydrodynamics (MHD) equations is proposed. The decoupled scheme is used for time discretization, and the finite element method is used for spatial discretization. Firstly, the almost unconditional stability (Δt≤C) of this scheme is established. Then optimal L2 and H1 error estimates of numerical solution are provided. Finally, a numerical example is presented to confirm our theoretical results and show the high efficiency of the decoupled scheme.

[1]  A. Lifschitz,et al.  Magnetohydrodynamics and Spectral Theory , 1989 .

[2]  Ivan Yotov,et al.  Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach , 2014, 1403.5707.

[3]  Ulisse Dini Sopra le funzioni di una variabile complessa , 1870 .

[4]  Eric Ronald Priest,et al.  Advances in solar system magnetohydrodynamics , 1991 .

[5]  Endre Süli,et al.  Large-time behaviour of solutions to the magneto-hydrodynamics equations , 1996 .

[6]  V. Georgescu,et al.  Some boundary value problems for differential forms on compact riemannian manifolds , 1979 .

[7]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[8]  Matthias Wiedmer,et al.  Finite element approximation for equations of magnetohydrodynamics , 2000, Math. Comput..

[9]  William J. Layton,et al.  Decoupled Time Stepping Methods for Fluid-Fluid Interaction , 2012, SIAM J. Numer. Anal..

[10]  Yinnian He,et al.  Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics , 2014 .

[11]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[12]  Santiago Badia,et al.  On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..

[13]  Yinnian He,et al.  Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations , 2015 .

[14]  M. Gunzburger,et al.  On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .

[15]  Hoang Tran,et al.  Analysis of Long Time Stability and Errors of Two Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows , 2013, SIAM J. Numer. Anal..

[16]  Chongsheng Cao,et al.  Two regularity criteria for the 3D MHD equations , 2009, 0903.2577.

[17]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[18]  A. Meir,et al.  Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary , 1999 .

[19]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[20]  D. Schötzau,et al.  A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .

[21]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[22]  Florentina Tone,et al.  On the Long-Time H2-Stability of the Implicit Euler Scheme for the 2D Magnetohydrodynamics Equations , 2009, J. Sci. Comput..

[23]  Xiaoming He,et al.  Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems , 2014, Math. Comput..

[24]  Ping Zhang,et al.  Global small solutions to 2-D incompressible MHD system , 2013, 1302.5877.

[25]  Endre Süli,et al.  Approximation of the global attractor for the incompressible Navier–Stokes equations , 2000 .

[26]  Cheng He,et al.  On the regularity criteria for weak solutions to the magnetohydrodynamic equations , 2007 .

[27]  Dominik Schötzau,et al.  Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.

[28]  Li Shan,et al.  Partitioned Time Stepping Method for Fully Evolutionary Stokes-Darcy Flow with Beavers-Joseph Interface Conditions , 2013, SIAM J. Numer. Anal..

[29]  Wenqiang Feng,et al.  Non-iterative domain decomposition methods for a non-stationary Stokes-Darcy model with Beavers-Joseph interface condition , 2012, Appl. Math. Comput..

[30]  Dongho Chae Nonexistence of self-similar singularities in the viscous magnetohydrodynamics with zero resistivity , 2007 .

[31]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[32]  Jean-Luc Guermond,et al.  Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements , 2011, Math. Comput..

[33]  A. Prohl Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .

[34]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[35]  Xiaohong Zhu,et al.  Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..

[36]  Santiago Badia,et al.  A Nodal-based Finite Element Approximation of the Maxwell Problem Suitable for Singular Solutions , 2012, SIAM J. Numer. Anal..

[37]  W. Layton,et al.  A decoupling method with different subdomain time steps for the nonstationary stokes–darcy model , 2013 .

[38]  Lamberto Cattabriga,et al.  Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .

[39]  Zhouping Xin,et al.  Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations , 2005 .

[40]  Jean-Frédéric Gerbeau,et al.  A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.

[41]  Roger Temam,et al.  Induced trajectories and approximate inertial manifolds , 1989 .

[42]  Fanghua Lin,et al.  Global Small Solutions to an MHD‐Type System: The Three‐Dimensional Case , 2014 .

[43]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[44]  Yinnian He,et al.  The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..