Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation
暂无分享,去创建一个
[1] A. Lifschitz,et al. Magnetohydrodynamics and Spectral Theory , 1989 .
[2] Ivan Yotov,et al. Partitioning strategies for the interaction of a fluid with a poroelastic material based on a Nitsche’s coupling approach , 2014, 1403.5707.
[3] Ulisse Dini. Sopra le funzioni di una variabile complessa , 1870 .
[4] Eric Ronald Priest,et al. Advances in solar system magnetohydrodynamics , 1991 .
[5] Endre Süli,et al. Large-time behaviour of solutions to the magneto-hydrodynamics equations , 1996 .
[6] V. Georgescu,et al. Some boundary value problems for differential forms on compact riemannian manifolds , 1979 .
[7] Roger Temam,et al. Some mathematical questions related to the MHD equations , 1983 .
[8] Matthias Wiedmer,et al. Finite element approximation for equations of magnetohydrodynamics , 2000, Math. Comput..
[9] William J. Layton,et al. Decoupled Time Stepping Methods for Fluid-Fluid Interaction , 2012, SIAM J. Numer. Anal..
[10] Yinnian He,et al. Streamline diffusion finite element method for stationary incompressible magnetohydrodynamics , 2014 .
[11] Yinnian He. Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .
[12] Santiago Badia,et al. On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..
[13] Yinnian He,et al. Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations , 2015 .
[14] M. Gunzburger,et al. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics , 1991 .
[15] Hoang Tran,et al. Analysis of Long Time Stability and Errors of Two Partitioned Methods for Uncoupling Evolutionary Groundwater-Surface Water Flows , 2013, SIAM J. Numer. Anal..
[16] Chongsheng Cao,et al. Two regularity criteria for the 3D MHD equations , 2009, 0903.2577.
[17] R. Rannacher,et al. Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .
[18] A. Meir,et al. Analysis and Numerical Approximation of a Stationary MHD Flow Problem with Nonideal Boundary , 1999 .
[19] Frédéric Hecht,et al. New development in freefem++ , 2012, J. Num. Math..
[20] D. Schötzau,et al. A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics , 2010 .
[21] Weiwei Sun,et al. Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..
[22] Florentina Tone,et al. On the Long-Time H2-Stability of the Implicit Euler Scheme for the 2D Magnetohydrodynamics Equations , 2009, J. Sci. Comput..
[23] Xiaoming He,et al. Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems , 2014, Math. Comput..
[24] Ping Zhang,et al. Global small solutions to 2-D incompressible MHD system , 2013, 1302.5877.
[25] Endre Süli,et al. Approximation of the global attractor for the incompressible Navier–Stokes equations , 2000 .
[26] Cheng He,et al. On the regularity criteria for weak solutions to the magnetohydrodynamic equations , 2007 .
[27] Dominik Schötzau,et al. Mixed finite element methods for stationary incompressible magneto–hydrodynamics , 2004, Numerische Mathematik.
[28] Li Shan,et al. Partitioned Time Stepping Method for Fully Evolutionary Stokes-Darcy Flow with Beavers-Joseph Interface Conditions , 2013, SIAM J. Numer. Anal..
[29] Wenqiang Feng,et al. Non-iterative domain decomposition methods for a non-stationary Stokes-Darcy model with Beavers-Joseph interface condition , 2012, Appl. Math. Comput..
[30] Dongho Chae. Nonexistence of self-similar singularities in the viscous magnetohydrodynamics with zero resistivity , 2007 .
[31] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[32] Jean-Luc Guermond,et al. Approximation of the eigenvalue problem for the time harmonic Maxwell system by continuous Lagrange finite elements , 2011, Math. Comput..
[33] A. Prohl. Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system , 2008 .
[34] R. Temam,et al. Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .
[35] Xiaohong Zhu,et al. Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..
[36] Santiago Badia,et al. A Nodal-based Finite Element Approximation of the Maxwell Problem Suitable for Singular Solutions , 2012, SIAM J. Numer. Anal..
[37] W. Layton,et al. A decoupling method with different subdomain time steps for the nonstationary stokes–darcy model , 2013 .
[38] Lamberto Cattabriga,et al. Su un problema al contorno relativo al sistema di equazioni di Stokes , 1961 .
[39] Zhouping Xin,et al. Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations , 2005 .
[40] Jean-Frédéric Gerbeau,et al. A stabilized finite element method for the incompressible magnetohydrodynamic equations , 2000, Numerische Mathematik.
[41] Roger Temam,et al. Induced trajectories and approximate inertial manifolds , 1989 .
[42] Fanghua Lin,et al. Global Small Solutions to an MHD‐Type System: The Three‐Dimensional Case , 2014 .
[43] R. Temam. Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .
[44] Yinnian He,et al. The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data , 2008, Math. Comput..