Dihedral Biembeddings and Triangulations by Complete and Complete Tripartite Graphs

We construct biembeddings of some Latin squares which are Cayley tables of dihedral groups. These facilitate the construction of $${n^{an^2}}$$ nonisomorphic face 2-colourable triangular embeddings of the complete tripartite graph Kn,n,n and the complete graph Kn for linear classes of values of n and suitable constants a. Previously the best known lower bounds for the number of such embeddings that are applicable to linear classes of values of n were of the form $${2^{an^2}.}$$ We remark that trivial upper bounds are $${n^{n^2/3}}$$ in the case of complete graphs Kn and $${n^{2n^2}}$$ in the case of complete tripartite graphs Kn,n,n.

[1]  Vladimir P. Korzhik Exponentially many nonisomorphic orientable triangular embeddings of K12s , 2008, Discret. Math..

[2]  Mike J. Grannell,et al.  Triangulations of orientable surfaces by complete tripartite graphs , 2006, Discret. Math..

[3]  Mike J. Grannell,et al.  On Biembeddings of Latin Squares , 2009, Electron. J. Comb..

[4]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[5]  Mike J. Grannell,et al.  A lower bound for the number of triangular embeddings of some complete graphs and complete regular tripartite graphs , 2008, J. Comb. Theory, Ser. B.

[6]  Vladimir P. Korzhik,et al.  On the Number of Nonisomorphic Orientable Regular Embeddings of Complete Graphs , 2001, J. Comb. Theory, Ser. B.

[7]  Mike J. Grannell,et al.  Some rigid Steiner 5‐designs , 2010 .

[8]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[9]  Vladimir P. Korzhik,et al.  Exponentially many nonisomorphic orientable triangular embeddings of K12s+3 , 2009, Discret. Math..

[10]  Mike J. Grannell,et al.  Exponential Families of Non-Isomorphic Triangulations of Complete Graphs , 2000, J. Comb. Theory, Ser. B.

[11]  Seth R. Alpert,et al.  Twofold Triple Systems and Graph Imbeddings , 1975, J. Comb. Theory, Ser. A.

[12]  G. Ringel Map Color Theorem , 1974 .

[13]  Mike J. Grannell,et al.  A lower bound for the number of orientable triangular embeddings of some complete graphs , 2010, J. Comb. Theory, Ser. B.

[14]  Mike J. Grannell,et al.  Biembeddings of Abelian groups , 2009 .

[15]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[16]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[17]  Vladimir P. Korzhik,et al.  Exponential Families of Non-isomorphic Non-triangular Orientable Genus Embeddings of Complete Graphs , 2002, J. Comb. Theory, Ser. B.

[18]  Vladimir P. Korzhik,et al.  Exponential families of nonisomorphic nonorientable genus embeddings of complete graphs , 2004, J. Comb. Theory, Ser. B.

[19]  Mike J. Grannell,et al.  Recursive constructions for triangulations , 2002 .

[20]  Vladimir P. Korzhik,et al.  Nonorientable biembeddings of Steiner triple systems , 2004, Discret. Math..

[21]  Seiya Negami,et al.  Three nonisomorphic triangulations of an orientable surface with the same complete graph , 1994, Discret. Math..

[22]  Mike J. Grannell,et al.  BIEMBEDDINGS OF LATIN SQUARES AND HAMILTONIAN DECOMPOSITIONS , 2004, Glasgow Mathematical Journal.