Polymer Gels Constructed Through Metal–Ligand Coordination

In the past few years, combining supramolecular and macromolecular chemistries has become of great interest to yield dynamic and responsive assemblies with self-restructuring abilities. Among them, polymer networks, that are held together by one or a combination of supramolecular interactions, offer new possibilities to scientists for the creation of artificial materials with self-healing properties. In particular, incorporating coordination complexes into polymeric architectures opens up the possibility of imparting the physicochemical properties of both partners to the resulting material. Here, recent achievements in the field of supramolecular gels that are formed via self-assembly of oligo- and polymeric units through reversible metal–ligand interactions are reviewed. The different strategies and routes for the elaboration of those materials are reported as well as the properties that the coordination centers confer to the supramolecular assemblies.

[1]  A. Colin,et al.  Thermoreversible gels as magneto-optical switches. , 2004, Angewandte Chemie.

[2]  C. Weder,et al.  Synthesis of π-Conjugated Organometallic Polymer Networks , 2003 .

[3]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[4]  T. Prangé,et al.  Tuning organogels and mesophases with phenanthroline ligands and their copper complexes by inter- to intramolecular hydrogen bonds. , 2004, Journal of the American Chemical Society.

[5]  A. Blake,et al.  Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands , 2001 .

[6]  Elena E. Dormidontova,et al.  Monte carlo simulations of metallo-supramolecular micelles. , 2010, Macromolecular rapid communications.

[7]  L. Cronin Supramolecular coordination chemistry , 2005 .

[8]  S. Rowan,et al.  Metal-ligand induced supramolecular polymerization: a route to responsive materials. , 2005, Faraday discussions.

[9]  F. Würthner,et al.  Gelation of a highly fluorescent urea-functionalized perylene bisimide dye. , 2005, Organic letters.

[10]  R. Sijbesma,et al.  Quantification of ultrasound-induced chain scission in PdII-phosphine coordination polymers. , 2006, Chemistry.

[11]  U. Schubert,et al.  Stimuli-responsive aqueous micelles from an ABC metallo-supramolecular triblock copolymer , 2002 .

[12]  P. Ballester,et al.  Fluorescent supramolecular polymers: Metal directed self-assembly of perylene bisimide building blocks , 2005 .

[13]  Sytze J Buwalda,et al.  Poly(ethylene glycol)-poly(L -lactide) star block copolymer hydrogels crosslinked by metal-ligand coordination , 2012 .

[14]  Oren A Scherman,et al.  Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. , 2010, Journal of the American Chemical Society.

[15]  A. Ricard,et al.  Reversible gel formation induced by ion complexation. 1. Borax-galactomannan interactions , 1988 .

[16]  I. Manners Synthetic Metal Containing Polymers , 2002 .

[17]  U. Schubert,et al.  Supramolecular Branching and Crosslinking of Terpyridine‐Modified Copolymers: Complexation and Decomplexation Studies in Diluted Solution , 2003 .

[18]  George R. Whittell,et al.  Metallopolymers: New Multifunctional Materials , 2007 .

[19]  T. Saegusa,et al.  Synthesis of Bipyridyl-Branched Polyoxazoline and Its Gelation by Means of Metal Coordination , 1993 .

[20]  U. Schubert,et al.  Reversible metallo-supramolecular block copolymer micelles containing a soft core , 2002 .

[21]  H. Möhwald,et al.  Thin films of cross-linked metallo-supramolecular coordination polyelectrolytes. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[22]  K. Nijenhuis Crosslink nature in Cr(III)-polyacrylamide gels , 2001 .

[23]  D. Mingos Supramolecular Assembly via Hydrogen Bonds II , 2004 .

[24]  Z. Bian,et al.  Chiral binaphthylbisbipyridine-based copper(I) coordination polymer gels as supramolecular catalysts. , 2010, Chemical communications.

[25]  V. Balzani,et al.  Rigid Rod-Like Dinuclear Ru(II)/Os(II) Terpyridine-Type Complexes. Electrochemical Behavior, Absorption Spectra, Luminescence Properties, and Electronic Energy Transfer through Phenylene Bridges , 1994 .

[26]  S. Hecht,et al.  Responsive Backbones Based on Alternating Triazole-Pyridine/Benzene Copolymers: From Helically Folding Polymers to Metallosupramolecularly Crosslinked Gels , 2008 .

[27]  T. Saegusa,et al.  Cobalt(III) bipyridyl-branched polyoxazoline complex as a thermally and redox reversible hydrogel , 1993 .

[28]  Willem Verboom,et al.  Metallomacrocycles: Supramolecular Chemistry with Hard and Soft Metal Cations in Action , 1994 .

[29]  O. Ikkala,et al.  Hierarchical self-assembly in polymeric complexes: towards functional materials. , 2004, Chemical communications.

[30]  M. Guo,et al.  Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and α-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host−Guest Interaction , 2008 .

[31]  E. Zangrando,et al.  Trinuclear metallacycles: metallatriangles and much more. , 2008, Chemical reviews.

[32]  Stuart R. Batten,et al.  Coordination Polymers: Design, Analysis and Application , 2009 .

[33]  S. Rowan,et al.  Multistimuli, multiresponsive metallo-supramolecular polymers. , 2003, Journal of the American Chemical Society.

[34]  M. Higuchi,et al.  Optically active metallo-supramolecular polymers derived from chiral bis-terpyridines. , 2009, Organic letters.

[35]  V. Breedveld,et al.  Complementary Hydrogen-Bonded Thermoreversible Polymer Networks with Tunable Properties , 2008 .

[36]  U. Schubert,et al.  Metallo-supramolecular block copolymer micelles : improved preparation and characterization , 2004 .

[37]  R. Audebert,et al.  Reversible gel formation induced by ion complexation. 2. Phase diagrams , 1988 .

[38]  M. F. Teixeira,et al.  A novel Mn-containing conducting metallopolymer obtained by electropolymerization in aqueous solution of a tetranuclear oxo-bridged manganese complex. , 2011, Dalton transactions.

[39]  Jean-Marie Lehn,et al.  Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) , 1988 .

[40]  R. J. Williams,et al.  Order of Stability of Metal Complexes , 1948, Nature.

[41]  M. Weck,et al.  Cross-linked and functionalized ‘universal polymer backbones’ via simple, rapid, and orthogonal multi-site self-assembly , 2004 .

[42]  Michael Müller,et al.  Highly Enantioselective Preparation of Multifunctionalized Propargylic Building Blocks , 2002 .

[43]  Jean-Marie Lehn,et al.  From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. , 2007, Chemical Society reviews.

[44]  S. Rowan,et al.  Metal/Ligand-Induced Formation of Metallo-Supramolecular Polymers , 2005 .

[45]  R. Prud’homme,et al.  Tailoring Polymeric Hydrogels through Cyclodextrin Host-Guest Complexation. , 2010, Macromolecular rapid communications.

[46]  E. Sudhölter,et al.  Linear rheology of water-soluble reversible neodymium(III) coordination polymers. , 2004, Journal of the American Chemical Society.

[47]  V. Breedveld,et al.  Multiresponsive Reversible Polymer Networks Based on Hydrogen Bonding and Metal Coordination , 2011 .

[48]  J. Miller,et al.  Stabilisation of cobalt(I) by coordination within a bipyridyl-based hydrogel polymer membrane , 1992 .

[49]  A. Hamilton,et al.  Water gelation by small organic molecules. , 2004, Chemical reviews.

[50]  Chuanbin Mao,et al.  Bio-inspired supramolecular self-assembly towards soft nanomaterials , 2011, Frontiers of materials science.

[51]  S. Rowan,et al.  Supramolecular Polymerizations and Main-Chain Supramolecular Polymers , 2009 .

[52]  Stuart J. Rowan,et al.  A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions. , 2009, Chemical communications.

[53]  C. Su,et al.  Evolution of Spherical Assemblies to Fibrous Networked Pd(II) Metallogels from a Pyridine-Based Tripodal Ligand and Their Catalytic Property , 2009 .

[54]  F. Fages Metal coordination to assist molecular gelation. , 2006, Angewandte Chemie.

[55]  H. P. Leeuwen Revisited: The Conception of Lability of Metal Complexes , 2001 .

[56]  F. Tanaka Intramolecular micelles and intermolecular crosslinks in thermoreversible gels of associating polymers , 2002 .

[57]  R. Nolte,et al.  Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly , 2003 .

[58]  C. Schalley,et al.  Thermodynamically controlled self-sorting of hetero-bimetallic metallo-supramolecular macrocycles: what a difference a methylene group makes! , 2011, Chemical communications.

[59]  J. Lehn,et al.  Helicate self-organisation: positive cooperativity in the self-assembly of double-helical metal complexes , 1992 .

[60]  Frank Würthner,et al.  Metallosupramolecular approach toward functional coordination polymers , 2005 .

[61]  S. Craig,et al.  Chemoresponsive viscosity switching of a metallo-supramolecular polymer network near the percolation threshold , 2007 .

[62]  M. Higuchi,et al.  Metallosupramolecular polyelectrolytes self-assembled from various pyridine ring-substituted bisterpyridines and metal ions: photophysical, electrochemical, and electrochromic properties. , 2008, Journal of the American Chemical Society.

[63]  U. Schubert,et al.  A high-throughput approach towards tailor-made water-soluble metallo-supramolecular polymers , 2004 .

[64]  D. Chandler Interfaces and the driving force of hydrophobic assembly , 2005, Nature.

[65]  Boris Rybtchinski,et al.  Supramolecular gel based on a perylene diimide dye: multiple stimuli responsiveness, robustness, and photofunction. , 2009, Journal of the American Chemical Society.

[66]  K. Nijenhuis Thermoreversible Networks: Viscoelastic Properties and Structure of Gels , 1997 .

[67]  Xia Ding,et al.  A Multiresponsive, Shape‐Persistent, and Elastic Supramolecular Polymer Network Gel Constructed by Orthogonal Self‐Assembly , 2012, Advanced materials.

[68]  Feihe Huang,et al.  Metal coordination mediated reversible conversion between linear and cross-linked supramolecular polymers. , 2010, Angewandte Chemie.

[69]  J. Miller,et al.  Kinetic and mechanistic aspects of iron(II) coordination to bipyridyl-based hydrogel pofymer membranes , 1994 .

[70]  Elena E. Dormidontova,et al.  Reversible association and network formation in 3 : 1 ligand–metal polymer solutions , 2008 .

[71]  G. J. Fleer,et al.  Water-soluble reversible coordination polymers: chains and rings , 2003 .

[72]  A. Ajayaghosh,et al.  Self-assembly of oligo(para-phenylenevinylene)s through arene-perfluoroarene interactions: pi gels with longitudinally controlled fiber growth and supramolecular exciplex-mediated enhanced emission. , 2008, Chemistry.

[73]  U. Schubert,et al.  Metallo‐supramolecular micelles: Studies by analytical ultracentrifugation and electron microscopy , 2003 .

[74]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[75]  R. Sijbesma,et al.  Reversible switching of the sol-gel transition with ultrasound in rhodium(I) and iridium(I) coordination networks. , 2007, Journal of the American Chemical Society.

[76]  Akira Harada,et al.  Redox-responsive self-healing materials formed from host–guest polymers , 2011, Nature communications.

[77]  Richard Hoogenboom,et al.  Functional ruthenium(II)- and iridium(III)-containing polymers for potential electro-optical applications. , 2007, Chemical Society reviews.

[78]  U. Schubert,et al.  Covalent vs Metallo-supramolecular Block Copolymer Micelles , 2002 .

[79]  Subi J. George,et al.  Self-assembled nanotapes of oligo(p-phenylene vinylene)s: sol-gel-controlled optical properties in fluorescent pi-electronic gels. , 2005, Chemistry.

[80]  U. Schubert,et al.  High molecular weight supramolecular polymers containing both terpyridine metal complexes and ureidopyrimidinone quadruple hydrogen-bonding units in the main chain. , 2005, Journal of the American Chemical Society.

[81]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[82]  K. Fromm,et al.  Coordination polymer networks with O- and N-donors: What they are, why and how they are made , 2006 .

[83]  M. Rehahn,et al.  A Novel Synthetic Strategy toward Soluble, Well-Defined Ruthenium(II) Coordination Polymers , 1996 .

[84]  R. Shunmugam,et al.  Polymers that Contain Ligated Metals in their Side Chain : Building a Foundation for Functional Materials in Opto-Electronic Applications with an Emphasis on Lanthanide Ions , 2008 .

[85]  E. E. Braudo,et al.  Definition of the concept of polymer gel , 2008 .

[86]  N. Nemoto,et al.  Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. , 2004, Journal of the American Chemical Society.

[87]  S. Craig,et al.  Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. , 2005, Angewandte Chemie.

[88]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[89]  A. Abd-El-Aziz,et al.  Synthetic methodologies and properties of organometallic and coordination macromolecules , 2010 .

[90]  Markus Neuburger,et al.  When is a metallopolymer not a metallopolymer? When it is a metallomacrocycle. , 2011, Dalton transactions.

[91]  Jean-Marie Lehn,et al.  Design of organic complexing agents Strategies towards properties , 1973 .

[92]  S. Craig,et al.  A hybrid polymer gel with controlled rates of cross-link rupture and self-repair , 2007, Journal of The Royal Society Interface.

[93]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[94]  B. Kariuki,et al.  Self-assembly of a twelve-component hexanuclear metallomacrocycle constructed with a novel tri-amino ligand. , 2002, Chemical communications.

[95]  M. Higuchi,et al.  Metallo‐Supramolecular Polymers Based on Functionalized Bis‐terpyridines as Novel Electrochromic Materials , 2007 .

[96]  B. Tieke,et al.  Fast‐Switching Electrochromic Films of Zinc Polyiminofluorene‐Terpyridine Prepared Upon Coordinative Supramolecular Assembly , 2009 .

[97]  C. Booth,et al.  Micelles and gels of oxyethylene–oxybutylene diblock copolymers in aqueous solution: The effect of oxyethylene-block length , 1999 .

[98]  J. Miller,et al.  Synthesis, characterisation and complexation behaviour of a series of pyridyl- and bipyridyl-based hydrogel membranes , 1993 .

[99]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[100]  S. Craig,et al.  Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. , 2005, Journal of the American Chemical Society.

[101]  C. Su,et al.  Metal–organic gels as functionalisable supports for catalysis , 2009 .

[102]  A. J. Goshe,et al.  Supramolecular recognition: On the kinetic lability of thermodynamically stable host–guest association complexes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Y. Matsushita,et al.  Simple preparation of supramolecular polymer gels viahydrogen bonding by blending two liquid polymers , 2011 .

[104]  Jmw Jean-Francois Gohy Metallo-supramolecular block copolymer micelles , 2002 .

[105]  T. Saegusa,et al.  Iron(II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel , 1993 .

[106]  D. Kurth,et al.  Soluble dynamic coordination polymers as a paradigm for materials science , 2008 .

[107]  T. Waigh,et al.  Dynamic light scattering study of the dynamics of a gelled polymeric micellar system. , 2004, The Journal of chemical physics.

[108]  A. J. Goshe,et al.  Supramolecular Recognition: Use of Cofacially Disposed Bis‐terpyridyl Square‐Planar Complexes in Self‐Assembly and Molecular Recognition , 2001 .

[109]  Yingming Yao,et al.  Metallomacrocycle complexes of lanthanides with bridged amide ligands : Syntheses and molecular structures of [{μ2-p-(Me3SiN)2C6H4}YbCl(THF)2]2 and [{μ2-p-(Me3SiN)2C6H4}Nd(μ2-Cl)(THF)]4 2phme , 2006 .

[110]  R. Weiss,et al.  Molecular organogels. Soft matter comprised of low-molecular-mass organic gelators and organic liquids. , 2006, Accounts of chemical research.

[111]  Bing Xu,et al.  Design of Coordination Polymer Gels as Stable Catalytic Systems , 2002 .

[112]  B. Kariuki,et al.  Formation of a [1 + 1] metallomacrocycle from a heterotritopic ligand containing two terpy and one bipy metal-binding domains. , 2002, Chemical communications.

[113]  Justin R. Kumpfer,et al.  Optically healable supramolecular polymers , 2011, Nature.

[114]  R. Prud’homme,et al.  Complexation behavior of alpha-, beta-, and gamma-cyclodextrin in modulating and constructing polymer networks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[115]  M. Rehahn,et al.  First synthesis of soluble, well defined coordination polymers from kinetically unstable copper(I) complexes , 1996 .

[116]  J. Gohy,et al.  Tuning micellar morphology and rheological behaviour of metallo-supramolecular micellar gels , 2012 .

[117]  M. E. Wright Synthesis of conjugated polymers using a (.eta.6-Arene)Cr(CO)3 monomer , 1989 .

[118]  E. Sudhölter,et al.  3‐D Water‐Soluble Reversible Neodymium(III) and Lanthanum(III) Coordination Polymers , 2004 .

[119]  Henrik Birkedal,et al.  pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli , 2011, Proceedings of the National Academy of Sciences.

[120]  Ian Manners,et al.  Organometallic Polymers with Transition Metals in the Main Chain. , 1999, Chemical reviews.

[121]  P. Zitha,et al.  Viscoelastic behaviour of partly hydrolysed polyacrylamide/chromium(III) gels , 2003 .

[122]  B. Tieke,et al.  Conjugated Polymer with Benzimidazolylpyridine Ligands in the Side Chain: Metal Ion Coordination and Coordinative Self-Assembly into Fluorescent Ultrathin Films , 2011 .

[123]  C. Weder,et al.  High charge carrier mobility in conjugated organometallic polymer networks. , 2002, Journal of the American Chemical Society.

[124]  I. Manners,et al.  Frontiers in Transition Metal-Containing Polymers: Abd-El-Aziz/Frontiers in Transition Metal-Containing Polymers , 2007 .

[125]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[126]  Nicholas A. W. Bell,et al.  A dynamic covalent, luminescent metallopolymer that undergoes sol-to-gel transition on temperature rise. , 2011, Journal of the American Chemical Society.

[127]  U. Schubert,et al.  Characterization of Metallo-Supramolecular Block Copolymers by Analytical Ultracentrifugation† , 2006 .

[128]  Y. Matsushita,et al.  Design and properties of supramolecular polymer gels , 2012 .

[129]  K. Kamide,et al.  13C NMR Study on Gelation of Aqueous Carboxyethylcellulose with Total Degree of Substitution of 0.39 Solution Induced by Metal Cations , 1988 .

[130]  M. Rehahn,et al.  Coordination polymers from kinetically labile transitionmetal complexes: True macromolecules or only dynamic solution aggregates? , 2002 .

[131]  R. Weiss,et al.  Organogels and Low Molecular Mass Organic Gelators , 2000 .

[132]  U. Schubert,et al.  Supramolecular ABA triblock copolymers via a polycondensation approach : synthesis characterization, and micelle formation , 2006 .

[133]  J. Bünzli,et al.  Lanthanide-containing molecular and supramolecular polymetallic functional assemblies. , 2002, Chemical reviews.

[134]  J. Lehn,et al.  Dynamic sol-gel interconversion by reversible cation binding and release in G-quartet-based supramolecular polymers. , 2005, Chemical communications.

[135]  Martin D Hager,et al.  Functional soft materials from metallopolymers and metallosupramolecular polymers. , 2011, Nature materials.

[136]  G. Tew,et al.  Methacrylate Polymers Containing Metal Binding Ligands for Use in Supramolecular Materials: Random Copolymers Containing Terpyridines , 2002 .

[137]  C. Fraser,et al.  Iron Tris(bipyridine)-Centered Star Block Copolymers: Chelation of Triblock Macroligands Generated by ROP and ATRP , 2004 .

[138]  Feihe Huang,et al.  Self-healing supramolecular gels formed by crown ether based host-guest interactions. , 2012, Angewandte Chemie.

[139]  Xiaosong Wang,et al.  Metal-containing polymers: building blocks for functional (nano)materials. , 2010, Macromolecular rapid communications.

[140]  Samuel I Stupp,et al.  Molecular self-assembly into one-dimensional nanostructures. , 2008, Accounts of chemical research.

[141]  U. Schubert,et al.  Soluble high-molecular-mass poly(ethylene oxide)s via self-organization , 2003 .

[142]  C. Su,et al.  Dynamic functionalised metallogel: An approach to immobilised catalysis with improved activity , 2010 .

[143]  Sebastian Seiffert,et al.  Physical chemistry of supramolecular polymer networks. , 2012, Chemical Society reviews.

[144]  S. Rowan,et al.  Synthesis and Properties of Metallo-Supramolecular Poly(p-phenylene ethynylene)s , 2006 .

[145]  W. Haase,et al.  Synthesis and characterization of a novel liquid crystalline side chain metallopolymer , 1998 .

[146]  U. Schubert,et al.  Polystyrene with Pendant Mixed Functional Ruthenium(II)‐Terpyridine Complexes , 2002 .

[147]  S. Rowan,et al.  Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. , 2006, Journal of the American Chemical Society.

[148]  G. Lawrance Introduction to Coordination Chemistry , 2010 .

[149]  Richard G. Weiss,et al.  Molecular Gels: Materials with Self-Assembled Fibrillar Networks , 2005 .

[150]  O. Ikkala,et al.  Supramolecular Materials Based On Hydrogen-Bonded Polymers , 2007 .

[151]  U. Schubert,et al.  Metallo-supramolecular materials based on amine-grafting onto polypentafluorostyrene. , 2012, Macromolecular rapid communications.

[152]  F. Stadler,et al.  Connecting micelles by metallo-supramolecular interactions: towards stimuli responsive hierarchical materials , 2009 .

[153]  S. Rowan,et al.  Metallo-Supramolecular Polymerization: A Route to Easy-To-Process Organic/Inorganic Hybrid Materials , 2007 .

[154]  T. Hirao,et al.  Controlled formation of synthetic metal - transition metal conjugated complex systems , 1999 .

[155]  A. Ajayaghosh,et al.  Pi-organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions. , 2007, Accounts of chemical research.

[156]  U. Schubert,et al.  Synthesis and characterization of metallo-supramolecular micelles† , 2003 .

[157]  Simon Hanna,et al.  Hydrolysis of the Nafion® precursor studied by X-ray scattering and in-situ atomic force microscopy , 2001 .

[158]  U. Schubert,et al.  New Insights into Nickel(II), Iron(II), and Cobalt(II) Bis-Complex-Based Metallo-Supramolecular Polymers , 2007 .

[159]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[160]  Bo Zheng,et al.  Stimuli-responsive supramolecular polymeric materials. , 2012, Chemical Society reviews.

[161]  Carlos Díaz,et al.  Copper (II) Ions into Polyphosphazenes: Solid-Like Solution Behavior , 2010 .

[162]  U. Pietsch,et al.  Inducing spin crossover in metallo-supramolecular polyelectrolytes through an amphiphilic phase transition. , 2005, Journal of the American Chemical Society.

[163]  G. Wilkinson,et al.  Comprehensive coordination chemistry : the synthesis, reactions, properties & applications of coordination compounds , 1987 .

[164]  J. Lehn,et al.  Self-recognition in helicate self-assembly: spontaneous formation of helical metal complexes from mixtures of ligands and metal ions. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[165]  H. Shirai,et al.  Metallosupramolecular Gels Made of Four-armed Poly(ethylene glycol)s Having Terpyridine Termini , 2009 .

[166]  F. Basolo,et al.  Mechanism of Racemization of Complex Ions. I. Kinetics of the Dissociation and Racemization of Tris-(1,10-phenanthroline)-nickel(II) and Tris-(2,2'-dipyridyl)nickel (II) Complexes1 , 1953 .

[167]  M. Higuchi,et al.  Luminescence properties of metallo-supramolecular coordination polymers assembled from pyridine ring functionalized ditopic bis-terpyridines and Ru(II) ion , 2008 .

[168]  J. Lehn,et al.  Supramolecular Chemistry: Receptors, Catalysts, and Carriers , 1985, Science.

[169]  J. Miller,et al.  Coordinative cross-linking of pyridyl- and bipyridyl-based hydrogel polymer membranes , 1993 .

[170]  U. Schubert,et al.  Terpyridine‐modified poly(vinyl chloride): Possibilities for supramolecular grafting and crosslinking , 2003 .

[171]  J. Bünzli Benefiting from the unique properties of lanthanide ions. , 2006, Accounts of chemical research.

[172]  U. Schubert,et al.  Engineering with metallo-supramolecular polymers : linear coordination polymers and networks , 2003 .

[173]  R. Jerome,et al.  Fast multiresponsive micellar gels from a smart ABC triblock copolymer. , 2007, Angewandte Chemie.

[174]  R. Sijbesma,et al.  Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands , 2005 .

[175]  K. Rissanen,et al.  Equipping metallo-supramolecular macrocycles with functional groups: assemblies of pyridine-substituted urea ligands. , 2012, Dalton transactions.

[176]  Tak W. Kee,et al.  Aggregation and Host–Guest Interactions in Dansyl-Substituted Poly(acrylate)s in the Presence of β-Cyclodextrin and a β-Cyclodextrin Dimer in Aqueous Solution: A UV–Vis, Fluorescence, 1H NMR, and Rheological Study , 2011 .

[177]  R. Prud’homme,et al.  Polymer Networks Assembled by Host−Guest Inclusion between Adamantyl and β-Cyclodextrin Substituents on Poly(acrylic acid) in Aqueous Solution , 2008 .

[178]  Bing Xu,et al.  A versatile supramolecular hydrogel of nitrilotriacetic acid (NTA) for binding metal ions and magnetorheological response , 2011 .

[179]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[180]  R. O’Reilly,et al.  Using metallo-supramolecular block copolymers for the synthesis of higher order nanostructured assemblies. , 2010, Macromolecular rapid communications.

[181]  U. Schubert,et al.  Cylindrical micelles from the aqueous self-assembly of an amphiphilic poly(ethylene oxide)-b-poly(ferrocenylsilane) (PEO-b-PFS) block copolymer with a metallo-supramolecular linker at the block junction. , 2004, Chemistry.

[182]  U. Schubert,et al.  Combining Covalent and Noncovalent Cross-Linking: A Novel Terpolymer for Two-Step Curing Applications , 2003 .

[183]  R. Hogg,et al.  Rate-pH profile for the dissociation of iron(II)- and cobalt(II)-2,2',2''-terpyridine complexes , 1968 .

[184]  W. Wernsdorfer,et al.  Supramolecular metallomacrocycles based on trans-dicyanoferrite(III) building blocks: synthesis, crystal structure and magnetic properties. , 2009, Dalton transactions.

[185]  G. Tew,et al.  Supramolecular polymers containing terpyridine-metal complexes in the side chain , 2007 .

[186]  D. Kurth,et al.  From coordination complexes to coordination polymers through self-assembly , 2009 .

[187]  G. J. Gabriel,et al.  Metal-ligand-containing polymers: terpyridine as the supramolecular unit. , 2010, Macromolecular rapid communications.

[188]  U. Schubert,et al.  Tuning block copolymer micelles by metal–ligand interactions , 2008 .

[189]  J. Miller,et al.  The lack of selectivity in the transport of transition metal ions exhibited by pyridyl- and 2,2′-bipyridyl-based hydrogel membranes , 1995 .

[190]  M. Rehahn Organic-inorganic hybrid polymers , 1998 .

[191]  Whitesides,et al.  Macroscopic, Hierarchical, Two-Dimensional Self-Assembly. , 1999, Angewandte Chemie.

[192]  U. Schubert,et al.  Block copolymer libraries: modular versatility of the macromolecular Lego system. , 2004, Chemical communications.

[193]  J. Gohy,et al.  Metallo-supramolecular block copolymer micelles: recent achievements , 2011 .

[194]  M. Joanicot,et al.  Block copolymer assembly to control fluid rheology , 2001 .

[195]  R. G. Wilkins,et al.  The Kinetics of Replacement Reactions of Complexes of the Transition Metals with 2,2',2"-Terpyridine , 1966 .

[196]  Jean-Marie Lehn,et al.  Cryptates: inclusion complexes of macropolycyclic receptor molecules , 1978 .

[197]  S. Rowan,et al.  Synthesis and optical properties of metallo-supramolecular polymers. , 2005, Chemical communications.

[198]  U. Schubert,et al.  From supramolecular block copolymers to advanced nano-objects. , 2003, Chemistry.

[199]  Stuart J. Rowan,et al.  Influence of Metal Ion and Polymer Core on the Melt Rheology of Metallosupramolecular Films , 2012 .

[200]  K. Nijenhuis On the nature of crosslinks in thermoreversible gels , 2007 .

[201]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[202]  U. Schubert,et al.  Toward main chain metallo-terpyridyl supramolecular polymers: "the metal does the trick". , 2009, Macromolecular rapid communications.

[203]  Xiao-Han Wang,et al.  Hierarchical assembly of micro-/nano-building blocks: bio-inspired rigid structural functional materials. , 2011, Chemical Society reviews.

[204]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[205]  Jeffery T. Davis,et al.  Supramolecular architectures generated by self-assembly of guanosine derivatives. , 2007, Chemical Society reviews.

[206]  J. Vittal,et al.  One-dimensional coordination polymers: complexity and diversity in structures, properties, and applications. , 2011, Chemical reviews.

[207]  Yun Yan,et al.  Corrigendum to “Hierarchical assemblies of coordination supramolecules” [Coord. Chem. Rev. 254 (2010) 1072–1080] , 2010 .

[208]  Jonathan Seppala,et al.  A healable supramolecular polymer blend based on aromatic pi-pi stacking and hydrogen-bonding interactions. , 2010, Journal of the American Chemical Society.

[209]  E. W. Meijer,et al.  Hydrogen‐bonded supramolecular polymer networks , 1999 .

[210]  M. Higuchi,et al.  Transition metal ions: weak links for strong polymers. , 2006, Soft matter.

[211]  G. Newkome,et al.  Nanofabrication: reversible self-assembly of an imbedded hexameric metallomacrocycle within a macromolecular superstructure. , 2005, Angewandte Chemie.

[212]  T. Aida,et al.  Phosphorescent organogels via "metallophilic" interactions for reversible RGB-color switching. , 2005, Journal of the American Chemical Society.

[213]  J. Lee,et al.  Coordination polymer gel derived from a tetrazole ligand and Zn2+: spectroscopic and mechanical properties of an amorphous coordination polymer gel , 2012 .

[214]  S. Kawata,et al.  Interaction modes between heavy metal ions and water-soluble polymers. 2. Spectroscopic and magnetic reexamination of the aqueous solutions of cupric ions and poly(acrylic acid) , 1986 .

[215]  R. Shunmugam,et al.  White-light emission from mixing blue and red-emitting metal complexes , 2008 .

[216]  U. Schubert,et al.  Metallo-Supramolecular Diethylene Glycol: Water-Soluble Reversible Polymers , 2002 .

[217]  R. Sijbesma,et al.  A high molecular weight reversible coordination polymer of PdCl2 and 1,12-bis(diphenylphosphino)dodecaneElectronic supplementary information (ESI) available: experimental details, SEC results and NMR spectra. See http://www.rsc.org/suppdata/cc/b3/b301874a/ , 2003 .

[218]  Kyle A. Williams,et al.  Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. , 2007, Chemical Society reviews.

[219]  U. Schubert,et al.  New Preparation and Purification Methods for Metallo-Supramolecular Block Copolymers , 2007 .

[220]  U. Schubert,et al.  Study of the influence of the metal-ligand complex on the size of aqueous metallo-supramolecular micelles , 2006 .

[221]  I. Manners,et al.  Frontiers in Transition Metal-Containing Polymers , 2007 .

[222]  J. Hui,et al.  Metal-containing nanofibers via coordination chemistry , 2010 .

[223]  J. Gohy,et al.  Functionalized nanoporous thin films from metallo-supramolecular diblock copolymers. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[224]  Y. Yamaguchi,et al.  Self-organized pattern formation of cracks perpendicular to the drying direction of a colloidal suspension , 2012 .

[225]  Omar M. Yaghi,et al.  Metal-organic frameworks: a new class of porous materials , 2004 .

[226]  Guangning Hong,et al.  Multi-responsive self-healing metallo-supramolecular gels based on “click” ligand , 2012 .

[227]  J. Zasadzinski,et al.  Transmission Electron Microscopy of Gel Network Morphology: Relating Network Microstructure to Mechanical Properties , 1986 .

[228]  C. H. Walker The Hydrophobic Effect: Formation of Micelles and Biological Membranes , 1981 .

[229]  K. Suslick,et al.  One-dimensional coordination polymers: applications to material science , 1993 .

[230]  U. Schubert,et al.  Linear coordination polymers: synthetic strategies and solution viscosities , 2004 .

[231]  U. Schubert,et al.  Nanoporous Thin Films from Self‐Assembled Metallo‐ Supramolecular Block Copolymers , 2005 .

[232]  U. Schubert,et al.  Self-assembly of metallo-supramolecular block copolymers in thin films , 2008 .

[233]  Søren Hvilsted,et al.  Rheological Properties of Associative Star Polymers in Aqueous Solutions: Effect of Hydrophobe Length and Polymer Topology , 2009 .

[234]  Zhen Tong,et al.  Redox-responsive gel-sol/sol-gel transition in poly(acrylic acid) aqueous solution containing Fe(III) ions switched by light. , 2008, Journal of the American Chemical Society.

[235]  S. Craig,et al.  Orthogonal control of dissociation dynamics relative to thermodynamics in a main-chain reversible polymer. , 2003, Journal of the American Chemical Society.