The impact of neutron irradiation, graphite oxidation and fluorination on tritium uptake into and desorption from graphite in molten salt environments

[1]  R. Scarlat,et al.  Kinetics and transport of hydrogen in graphite at high temperature and the effects of oxidation, irradiation and isotopics , 2021, Journal of Nuclear Materials.

[2]  R. Scarlat,et al.  Thermodynamics of hydrogen in graphite at high temperature and the effects of oxidation, irradiation and isotopics , 2021 .

[3]  G. Zheng,et al.  Tritium Content and Chemical Form in Nuclear Graphite from Molten Fluoride Salt Irradiations , 2020 .

[4]  Xijun Wu,et al.  Adsorption and Desorption of Tritium in Nuclear Graphite at 700°C: A Gas Chromatographic Study Using Hydrogen , 2019, Nuclear Technology.

[5]  Huali Wu,et al.  Fluorination of nuclear graphite IG-110 in molten 2LiF-BeF2 (FLiBe) salt at 700 ºC , 2018, Journal of Fluorine Chemistry.

[6]  H. Atsumi,et al.  Retention and release of hydrogen isotopes in carbon materials priorly charged in gas phase , 2018, Fusion Engineering and Design.

[7]  D. Whyte,et al.  Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Status, Challenges, and Path Forward , 2017 .

[8]  Mary A. Snead,et al.  Property changes of G347A graphite due to neutron irradiation , 2016 .

[9]  Raluca O. Scarlat,et al.  Design Summary of the Mark-I Pebble-Bed, Fluoride Salt–Cooled, High-Temperature Reactor Commercial Power Plant , 2016 .

[10]  B. Marsden,et al.  Neutron Irradiation Damage of Nuclear Graphite studied by high-resolution Transmission Electron Microscopy and Raman Spectroscopy , 2015 .

[11]  J. Kloosterman,et al.  The Molten Salt Reactor in Generation IV: Overview and Perspectives , 2014 .

[12]  K. Sridharan,et al.  Characterization of structural defects in nuclear graphite IG-110 and NBG-18 , 2014 .

[13]  T. Shikama,et al.  Thermal desorption of hydrogen from carbon and graphite at elevated temperatures , 2013 .

[14]  David A. Petti,et al.  TRISO-Coated Particle Fuel Performance , 2012 .

[15]  Suyuan Yu,et al.  Pore structure development in oxidized IG-110 nuclear graphite , 2012 .

[16]  Timothy D. Burchell,et al.  The effect of microstructure on air oxidation resistance of nuclear graphite , 2012 .

[17]  Xingtai Zhou,et al.  Interaction between nuclear graphite and molten fluoride salts: a synchrotron radiation study of the substitution of graphitic hydrogen by fluoride ion. , 2012, The journal of physical chemistry. A.

[18]  T. Shikama,et al.  Hydrogen behavior in carbon and graphite before and after neutron irradiation – Trapping, diffusion and the simulation of bulk retention– , 2011 .

[19]  Timothy D. Burchell,et al.  Graphite Technology Development Plan , 2010 .

[20]  T. Shikama,et al.  Bulk hydrogen retention in neutron-irradiated graphite at elevated temperatures , 2009 .

[21]  T. Shikama,et al.  Hydrogen trapping in neutron-irradiated graphite , 2009 .

[22]  S. Chi,et al.  Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades , 2008 .

[23]  F. S. Baker,et al.  Practical Aspects for Characterizing Air Oxidation of Graphite , 2008 .

[24]  M. Rieth,et al.  Fissile core and Tritium-Breeding Blanket: structural materials and their requirements , 2008 .

[25]  P. Calderoni,et al.  Measurement of tritium permeation in flibe (2LiF•BeF2) , 2007 .

[26]  T. Shikama,et al.  Hydrogen absorption into neutron-irradiated graphite and estimation of the trapping effect , 2007 .

[27]  Luo Xiaowei,et al.  Effect of temperature on graphite oxidation behavior , 2004 .

[28]  P. Peterson,et al.  Molten-Salt-Cooled Advanced High-Temperature Reactor for Production of Hydrogen and Electricity , 2003 .

[29]  H. Atsumi,et al.  Hydrogen absorption and transport in graphite materials , 2003 .

[30]  H. Atsumi Hydrogen retention in graphite and carbon materials under a fusion reactor environment , 2003 .

[31]  H. Atsumi Hydrogen bulk retention in graphite and kinetics of diffusion , 2002 .

[32]  H. Atsumi,et al.  Hydrogen absorption process into graphite and carbon materials , 2000 .

[33]  Akihiko Shimizu,et al.  Design and development of the Flibe blanket for helical-type fusion reactor FFHR , 2000 .

[34]  A. Zakharov,et al.  Effect of oxidation on thermal desorption of deuterium sorbed in graphite , 1997 .

[35]  Yu. S. Cherepnin,et al.  Hydrogen release of reactor irradiated RGT-graphite , 1996 .

[36]  T. Shikama,et al.  Hydrogen behavior in carbon-based materials and its neutron irradiation effect , 1996 .

[37]  Timothy D. Burchell,et al.  The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite , 1996 .

[38]  Barney Lee Doyle,et al.  Hydrogen adsorption on and solubility in graphites , 1995 .

[39]  G. Federici,et al.  The effect of neutron irradiation on the trapping of tritium in carbon-based materials , 1994 .

[40]  T. Shikama,et al.  Trapping and detrapping of hydrogen in carbon-based materials exposed to hydrogen gas , 1994 .

[41]  S. Yamanaka,et al.  Thermodynamic analysis of hydrogen solubility in graphite , 1993 .

[42]  T. Shikama,et al.  Hydrogen solubility and diffusivity in neutron-irradiated graphite , 1992 .

[43]  E. Hoinkis Thermodesorption of deuterium from a porous graphitic carbon , 1991 .

[44]  E. Hoinkis The chemisorption of hydrogen on porous graphites at low pressure and at elevated temperature , 1991 .

[45]  W. Wampler,et al.  Trapping of deuterium at damage in graphite , 1990 .

[46]  T. Yamashina,et al.  Overall evaluation study for isotropic graphite as fusion first wall material in japan , 1989 .

[47]  H. Atsumi,et al.  Absorption and desorption of deuterium on graphite at elevated temperatures , 1988 .

[48]  M. Baskes,et al.  The retention of deuterium and tritium in POCO AXF‐5Q graphite , 1986 .

[49]  R. Strehlow Chemisorption of tritium on graphites at elevated temperatures , 1986 .

[50]  R. Hecker,et al.  Investigations on sorption and diffusion of tritium in HTGR-graphite , 1980 .

[51]  P. G. Fischer,et al.  Tritium Balance in High‐Temperature Gas‐Cooled Reactors , 1976 .

[52]  W. R. Grimes,et al.  Fission product behavior in the Molten Salt Reactor Experiment , 1975 .

[53]  P. L. Walker,et al.  HYDROGEN SORPTION ON GRAPHITE AT ELEVATED TEMPERATURES1,2 , 1960 .

[54]  C. Marshall,et al.  Comparative analysis of microstructure and reactive sites for nuclear graphite IG-110 and graphite matrix A3 , 2020, Journal of Nuclear Materials.

[55]  A. T. Cisneros,et al.  Pebble Bed Reactors Design Optimization Methods and their Application to the Pebble Bed Fluoride Salt Cooled High Temperature Reactor (PB-FHR) , 2013 .

[56]  T. Mays A new classification of pore sizes , 2007 .

[57]  H. Atsumi Mechanism of Hydrogen Trapping and Transport in Carbon Materials , 2003 .

[58]  C. H. Wu,et al.  Tritium retention in neutron-irradiated carbon-based materials and beryllium , 1996 .

[59]  M. Abdou Tritium Breeding in Fusion Reactors , 1983 .

[60]  R. A. Oriani,et al.  The diffusion and trapping of hydrogen in steel , 1970 .

[61]  J. Zemann Crystal structures,2nd edition. Vol. 1by R. W. G. Wyckoff , 1965 .

[62]  W. J. Thomas THE ADSORPTION OF HYDROGEN OF GRAPHITE , 1961 .