Charge–discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide–potassium bis(fluorosulfonyl)amide
暂无分享,去创建一个
Shinji Inazawa | Atsushi Fukunaga | Koji Nitta | Takayuki Yamamoto | R. Hagiwara | T. Nohira | Atsushi Fukunaga | Sho-ichiro Sakai | K. Nitta | Rika Hagiwara | Toshiyuki Nohira | Shoichiro Sakai | Takayuki Yamamoto | Shin'ji Inazawa
[1] Jae-Hun Kim,et al. Li-alloy based anode materials for Li secondary batteries. , 2010, Chemical Society reviews.
[2] K. Kubota,et al. Thermal Properties of Mixed Alkali Bis(trifluoromethylsulfonyl)amides , 2008 .
[3] Jun-ichi Yamaki,et al. Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries , 2011 .
[4] K. Kubota,et al. Electrochemical properties of alkali bis(trifluoromethylsulfonyl)amides and their eutectic mixtures , 2010 .
[5] Noriyuki Tamura,et al. Study on the anode behavior of Sn and Sn–Cu alloy thin-film electrodes , 2002 .
[6] C. Dustmann. Advances in ZEBRA batteries , 2004 .
[7] Taku Oshima,et al. Development of Sodium‐Sulfur Batteries , 2005 .
[8] R. Hagiwara,et al. Properties of an intermediate temperature ionic liquid NaTFSA–CsTFSA and charge–discharge properties of NaCrO2 positive electrode at 423 K for a sodium secondary battery , 2012 .
[9] J. L. Sudworth,et al. The sodium/sulphur battery , 1984 .
[10] Jean-Marie Tarascon,et al. Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .
[11] S. Bach,et al. ELECTROCHEMICAL SODIUM INSERTION INTO MNCO OXIDE , 1999 .
[12] Jun-ichi Yamaki,et al. Mechanochemical synthesis of NaMF3 (M = Fe, Mn, Ni) and their electrochemical properties as positive electrode materials for sodium batteries , 2009 .
[13] R. Hagiwara,et al. Intermediate-temperature ionic liquid NaFSA-KFSA and its application to sodium secondary batteries , 2012 .
[14] Kazuma Gotoh,et al. Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .
[15] J. Coetzer,et al. A new high energy density battery system , 1986 .
[16] Lawrence H. Bennett,et al. Binary alloy phase diagrams , 1986 .
[17] Shinichi Komaba,et al. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries , 2011 .
[18] D. Stevens,et al. High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .
[19] Shinichi Komaba,et al. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .
[20] Shinichi Komaba,et al. Electrochemically Reversible Sodium Intercalation of Layered NaNi0.5Mn0.5O2 and NaCrO2 , 2009 .
[21] Noriyuki Tamura,et al. Advanced structures in electrodeposited Tin base negative electrodes for lithium secondary batteries , 2003 .
[22] Jean-Marie Tarascon,et al. Ionothermal Synthesis of Sodium-Based Fluorophosphate Cathode Materials , 2009 .
[23] K. Kubota,et al. Novel inorganic ionic liquids possessing low melting temperatures and wide electrochemical windows: Binary mixtures of alkali bis(fluorosulfonyl)amides , 2008 .
[24] Shigeto Okada,et al. Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .
[25] Kathryn E. Toghill,et al. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. , 2007, Nature materials.