Numerical resolution of a two-component compressible fluid model with interfaces

We study an algorithm for moving interfaces in a two-component compressible fluid model. We propose to use the limited downwind scheme developed in Despres and Lagoutiere (1999, 2002) to avoid artificial numerical spreading of interfaces. The numerical treatment of the mixture is shown to be free of spurious pressure and velocity oscillations near the contact discontinuity. The algorithm is conservative for partial masses, total impulse and total energy. Various numerical simulations show the interest of this approach, for interfaces in dimensions 1, 2 and 3. Simplicity of the coding is an important feature of the algorithm.

[1]  R. Feldman Construction , 2004, SP-110: Hyperbolic Paraboloid Shells.

[2]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[3]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[4]  Grégoire Allaire,et al.  A five-equation model for the numerical simulation of interfaces in two-phase flows , 2000 .

[5]  R. Abgrall,et al.  Comparisons of several upwind schemes for multi-component one-dimensional inviscid flows , 1989 .

[6]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[7]  Rémi Abgrall,et al.  A Simple Method for Compressible Multifluid Flows , 1999, SIAM J. Sci. Comput..

[8]  Frédéric Lagoutière,et al.  Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .

[9]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[10]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[11]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[12]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[13]  Phillip Colella,et al.  Volume-of-Fluid Methods for Partial Differential Equations , 2001 .

[14]  Qiang Zhang,et al.  Three-Dimensional Front Tracking , 1998, SIAM J. Sci. Comput..

[15]  Qiang Zhang,et al.  A two‐phase flow model of the Rayleigh–Taylor mixing zone , 1996 .

[16]  B. Després,et al.  Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire , 1999 .

[17]  R. Abgrall Généralisation du schéma de Roe pour le calcul d'écoulement de mélanges de gaz à concentrations variables , 1988 .

[18]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[19]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[20]  François Bouchut,et al.  An Antidiffusive Entropy Scheme for Monotone Scalar Conservation Laws , 2004, J. Sci. Comput..

[21]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[22]  C. Angelopoulos High resolution schemes for hyperbolic conservation laws , 1992 .

[23]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[24]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .