Fuzzy sets in machine learning and data mining

Machine learning, data mining, and several related research areas are concerned with methods for the automated induction of models and the extraction of interesting patterns from empirical data. Automated knowledge acquisition of that kind has been an essential aspect of artificial intelligence since a long time and has more recently also attracted considerable attention in the fuzzy sets community. This paper briefly reviews some typical applications and highlights potential contributions that fuzzy set theory can make to machine learning, data mining, and related fields. In this connection, some advantages of fuzzy methods for representing and mining vague patterns in data are especially emphasized.

[1]  Daniel Sánchez,et al.  Fuzzy association rules: general model and applications , 2003, IEEE Trans. Fuzzy Syst..

[2]  Ronald R. Yager,et al.  Soft Aggregation Methods in Case Based Reasoning , 2004, Applied Intelligence.

[3]  Cezary Z. Janikow,et al.  Fuzzy decision trees: issues and methods , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Eyke Hüllermeier,et al.  An evolutionary approach to constraint-regularized learning , 2004 .

[5]  Reinhard Viertl,et al.  Statistical Methods for Non-Precise Data , 1996, International Encyclopedia of Statistical Science.

[6]  Witold Pedrycz,et al.  The design of decision trees in the framework of granular data and their application to software quality models , 2001, Fuzzy Sets Syst..

[7]  Tsau Young Lin,et al.  Granular Computing , 2003, RSFDGrC.

[8]  Sung-Bae Cho,et al.  Combining multiple neural networks by fuzzy integral for robust classification , 1995, IEEE Trans. Syst. Man Cybern..

[9]  F. Gomide,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[10]  Witold Pedrycz,et al.  Designing decision trees with the use of fuzzy granulation , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[11]  P. Kloeden,et al.  Metric Spaces Of Fuzzy Sets Theory And Applications , 1975 .

[12]  Richard Weber,et al.  Fuzzy-ID3: A class of methods for automatic knowledge acquisition , 1992 .

[13]  J. C. Peters,et al.  Fuzzy Cluster Analysis : A New Method to Predict Future Cardiac Events in Patients With Positive Stress Tests , 1998 .

[14]  Geert Wets,et al.  Overview of fuzzy associations mining , 2003 .

[15]  Anil K. Jain,et al.  Knowledge-Based Clustering , 1996 .

[16]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[17]  Eyke Hüllermeier,et al.  Implication-Based Fuzzy Association Rules , 2001, PKDD.

[18]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[19]  Didier Dubois,et al.  A Possibility-Theoretic View of Formal Concept Analysis , 2007, Fundam. Informaticae.

[20]  Alan Liu,et al.  Pattern discovery of fuzzy time series for financial prediction , 2006, IEEE Transactions on Knowledge and Data Engineering.

[21]  Kenneth G. Manton,et al.  Fuzzy Cluster Analysis , 2005 .

[22]  Eyke Hüllermeier Possibilistic Induction in Decision-Tree Learning , 2002, ECML.

[23]  Thanh Ha Dang,et al.  Measures of information for inductive learning , 2004 .

[24]  Anne Laurent,et al.  A new approach for the generation of fuzzy summaries based on fuzzy multidimensional databases , 2003, Intell. Data Anal..

[25]  Eyke Hüllermeier,et al.  Fuzzy methods in machine learning and data mining: Status and prospects , 2005, Fuzzy Sets Syst..

[26]  J. Busch,et al.  On the Optimality of the Binary Algorithm for the Jacobi Symbol , 2007, Fundam. Informaticae.

[27]  P. Diamond,et al.  Fuzzy regression analysis , 1999 .

[28]  Eyke Hüllermeier,et al.  Possibilistic instance-based learning , 2003, Artif. Intell..

[29]  Thomas Sudkamp Similarity as a foundation for possibility , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[30]  Louis Wehenkel,et al.  A complete fuzzy decision tree technique , 2003, Fuzzy Sets Syst..

[31]  Hans-Jürgen Zimmermann,et al.  Fuzzy Data Analysis , 1996 .

[32]  Tom M. Mitchell,et al.  The Need for Biases in Learning Generalizations , 2007 .

[33]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[34]  Eyke Hüllermeier,et al.  A systematic approach to the assessment of fuzzy association rules , 2006, Data Mining and Knowledge Discovery.

[35]  J. Gebhardt,et al.  A possibilistic interpretation of fuzzy sets by the context model , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[36]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[37]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[38]  H. Prade,et al.  Raisonner avec des règles d'inférence graduelle: une approche basée sur les ensembles flous , 1988 .

[39]  Eyke Hüllermeier,et al.  Association Rules for Expressing Gradual Dependencies , 2002, PKDD.

[40]  M. Eisen,et al.  Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering , 2002, Genome Biology.

[41]  Enrique H. Ruspini,et al.  Possibility as similarity; the semantics of fuzzy logic , 1990, UAI.

[42]  Eyke Hüllermeier,et al.  Cho-k-NN: A Method for Combining Interacting Pieces of Evidence in Case-Based Learning , 2005, IJCAI.

[43]  F. Herrera,et al.  Analyzing the reasoning mechanisms in fuzzy rule based classification systems. , 1998 .

[44]  L. Zadeh,et al.  Data mining, rough sets and granular computing , 2002 .

[45]  Eyke Hüllermeier,et al.  Fuzzy set-based methods in instance-based reasoning , 2002, IEEE Trans. Fuzzy Syst..

[46]  Witold Pedrycz,et al.  Granular computing: an introduction , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[47]  Didier Dubois,et al.  On the transformation between possibilistic logic bases and possibilistic causal networks , 2002, Int. J. Approx. Reason..

[48]  Mohamed A. Deriche,et al.  A New Technique for Combining Multiple Classifiers using The Dempster-Shafer Theory of Evidence , 2002, J. Artif. Intell. Res..

[49]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[50]  Eyke Hüllermeier,et al.  A Note on Quality Measures for Fuzzy Asscociation Rules , 2003, IFSA.

[51]  Henri Prade,et al.  Fuzzy set modelling in case-based reasoning , 1998, Int. J. Intell. Syst..

[52]  Salem Benferhat,et al.  Hybrid possibilistic networks , 2005, Int. J. Approx. Reason..

[53]  Didier Dubois,et al.  Gradual inference rules in approximate reasoning , 1992, Inf. Sci..

[54]  Witold Pedrycz,et al.  C-fuzzy decision trees , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[55]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[56]  Detlef Nauck,et al.  Foundations Of Neuro-Fuzzy Systems , 1997 .

[57]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[58]  Henri Prade,et al.  What are fuzzy rules and how to use them , 1996, Fuzzy Sets Syst..

[59]  Christian Borgelt,et al.  Graphical models - methods for data analysis and mining , 2002 .

[60]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[61]  Thomas Sudkamp,et al.  Examples, counterexamples, and measuring fuzzy associations , 2005, Fuzzy Sets Syst..

[62]  J. Casillas Interpretability issues in fuzzy modeling , 2003 .

[63]  Daniel Sánchez,et al.  An Alternative Approach to Discover Gradual Dependencies , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[64]  Shamkant B. Navathe,et al.  An Efficient Algorithm for Mining Association Rules in Large Databases , 1995, VLDB.