A mixed finite element method with Lagrange multipliers for nonlinear exterior transmission problems

Summary.We apply a mixed finite element method to numerically solve a class of nonlinear exterior transmission problems in R2 with inhomogeneous interface conditions. Besides the usual unknowns required for the dual-mixed method, which include the gradient of the temperature in this nonlinear case, our approach makes use of the trace of the outer solution on the transmission boundary as a suitable Lagrange multiplier. In addition, we use a boundary integral operator to reduce the original transmission problem on the unbounded region into a nonlocal one on a bounded domain. In this way, we are lead to a two-fold saddle point operator equation as the resulting variational formulation. We prove that the continuous formulation and the associated Galerkin scheme defined with Raviart-Thomas spaces are well posed, and derive the a-priori estimates and the corresponding rate of convergence. Then, we introduce suitable local problems and deduce first an implicit reliable and quasi-efficient a-posteriori error estimate, and then a fully explicit reliable one. Finally, several numerical results illustrate the effectivity of the explicit estimate for the adaptive computation of the discrete solutions.

[1]  Abdellatif Agouzal,et al.  An extension theorem for equilibrium finite elements spaces , 1996 .

[2]  E. Stephan,et al.  Adaptive coupling of boundary elements and mixed finite elements for incompressible elasticity , 2001 .

[3]  Gabriel N. Gatica,et al.  A posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings , 2002 .

[4]  I. Babuska,et al.  On the mixed finite element method with Lagrange multipliers , 2003 .

[5]  Gabriel N. Gatica,et al.  A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate , 2002, Numerische Mathematik.

[6]  Norbert Heuer,et al.  A Dual-Dual Formulation for the Coupling of Mixed-FEM and BEM in Hyperelasticity , 2000, SIAM J. Numer. Anal..

[7]  N. Heuer,et al.  On the numerical analysis of nonlinear twofold saddle point problems , 2003 .

[8]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[9]  A. Ženíšek,et al.  Nonlinear elliptic and evolution problems and their finite element approximations , 1990 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  Norbert Heuer,et al.  An implicit–explicit residual error estimator for the coupling of dual‐mixed finite elements and boundary elements in elastostatics , 2001 .

[12]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[13]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[14]  R. Araya,et al.  A posteriori error estimates for a mixed-FEM formulation of a non-linear elliptic problem , 2002 .

[15]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[16]  J. Tinsley Oden,et al.  A Posteriori Error Estimators for the Stokes and Oseen Equations , 1997 .

[17]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[18]  Gabriel N. Gatica,et al.  A mixed‐FEM formulation for nonlinear incompressible elasticity in the plane , 2002 .

[19]  Carsten Carstensen,et al.  An a posteriori error estimate for a first-kind integral equation , 1997, Math. Comput..

[20]  Salim Meddahi,et al.  A dual-dual mixed formulation for nonlinear exterior transmission problems , 2001, Math. Comput..

[21]  Norbert Heuer,et al.  An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method , 2001 .