Analysis of measured photon returns from sodium beacons

We describe an approach to the computation of photon returns from mesospheric sodium beacons excited by laser pulse trains and discuss as specific examples the required numbers of photons for adaptive-optical compensation of atmospheric turbulence. Computed photon return signals are compared with reported measurements for pulses that are long, short, or comparable to the D2 radiative lifetime (16 ns). Analytical approximations in good agreement with the numerical computations are derived. The results are consistent with experimental data for the different pulse durations.

[1]  Robert Q. Fugate,et al.  Summary of optical turbulence measurements taken at the Starfire Optical Range , 1995, Defense, Security, and Sensing.

[2]  Lee C. Bradley,et al.  Pulse-train excitation of sodium for use as a synthetic beacon , 1992 .

[3]  Claire E. Max,et al.  Sodium-layer laser-guide-star experimental results , 1994 .

[4]  David G. Sandler,et al.  Adaptive optics for diffraction-limited infrared imaging with 8-m telescopes , 1994 .

[5]  C. Gardner Sodium resonance fluorescence lidar applications in atmospheric science and astronomy , 1989, Proc. IEEE.

[6]  David L. Fried,et al.  Analysis of fundamental limits to artificial-guide-star adaptive-optics-system performance for astronomical imaging , 1994 .

[7]  D. Fried Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures , 1966 .

[8]  R. Parenti,et al.  Laser-guide-star system for astronomical applications , 1994 .

[9]  P W Milonni,et al.  Theory of mesospheric sodium fluorescence excited by pulse trains. , 1992, Applied optics.

[10]  R. Heinrichs,et al.  Observation of optical pumping of mesospheric sodium. , 1992, Optics letters.

[11]  P. Milonni Saturation of anomalous dispersion in cw HF lasers. , 1981, Applied optics.

[12]  B. Ellerbroek First-order performance evaluation of adaptive optics systems for atmospheric turbulence compensatio , 1994 .

[13]  James R. Morris,et al.  Efficient excitation of a mesospheric sodium laser guide star by intermediate-duration pulses , 1994 .

[14]  L. Noethe,et al.  Active Optics, Adaptive Optics, and Laser Guide Stars , 1993, Science.

[15]  Michael C. Roggemann,et al.  Shot noise performance of Hartmann and shearing interferometer wavefront sensors , 1995, Optics & Photonics.

[16]  P. Knight,et al.  The Rabi frequency in optical spectra , 1980 .

[17]  R. Q. Fugate,et al.  Characterization of artificial guide stars generated in the mesospheric sodium layer with a sum-frequency laser. , 1994 .

[18]  Francois Roddier,et al.  Adaptive Optics in Astronomy: Imaging through the atmosphere , 2004 .

[19]  H. W. Babcock,et al.  Adaptive Optics Revisited , 1990, Science.

[20]  A Finkbeiner Untwinkling the stars. , 1991, Science.

[21]  D. Fried,et al.  Image-position error associated with a quadrant detector , 1982 .

[22]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[23]  B. Welsh,et al.  Design and performance analysis of adaptive optical telescopes using lasing guide stars , 1990, Proc. IEEE.

[24]  Chester S. Gardner,et al.  Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations , 1986 .