Algebraic description of spacetime foam
暂无分享,去创建一个
[1] G. Landi,et al. Projective Systems of Noncommutative Lattices as a Pregeometric Substratum , 1998, math-ph/9810011.
[2] T. Regge. General relativity without coordinates , 1961 .
[3] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[4] A. Mallios. Geometry of Vector Sheaves: An Axiomatic Approach To Differential Geometry Volume Ii: Geometry. Examples And Applications , 1998 .
[5] Quantization of Discretized Spacetimes and theCorrespondence Principle , 1999, gr-qc/9904079.
[6] C. Isham. Quantum topology and quantisation on the lattice of topologies , 1989 .
[7] Albert Einstein,et al. Physics and reality , 1936 .
[8] R. Sorkin. Spacetime and causal sets. , 1991 .
[9] R. Sorkin,et al. Classical sequential growth dynamics for causal sets , 1999, gr-qc/9904062.
[10] Differential Structure of Greechie Logics , 1999, quant-ph/9902065.
[11] A Specimen of Theory Construction from Quantum Gravity , 1995, gr-qc/9511063.
[12] P. Żupránski,et al. Structure of theP11(1440MeV) resonance from α-pand π-Nscattering , 1999 .
[13] L. Crane. Clock and category: Is quantum gravity algebraic? , 1995, gr-qc/9504038.
[14] Incidence algebras of simplicial complexes , 2000, math/0001065.
[15] A. Einstein. Physik und realität , 1936 .
[16] D. Finkelstein. “Superconducting” causal nets , 1988 .
[17] A. Einstein. The Meaning of Relativity , 1946 .
[18] D. Finkelstein,et al. General Covariance is Bose-Einstein Statistics , 1999 .
[19] R. Sorkin. Finitary substitute for continuous topology , 1991 .
[20] Finitary Spacetime Sheaves , 2000, gr-qc/0102108.
[21] Joan Wick Pelletier,et al. On the quantisation of spaces , 2002 .
[22] N. Steenrod,et al. Foundations of Algebraic Topology , 1952 .
[23] I. Raptis,et al. Finitary Spacetime Sheaves of Quantum Causal Sets: Curving Quantum Causality , 2001, gr-qc/0102097.
[24] C. Isham,et al. Some Possible Roles for Topos Theory in Quantum Theory and Quantum Gravity , 1999, gr-qc/9910005.
[25] David Finkelstein,et al. SPACE--TIME CODE. , 1969 .
[26] A. Zeilinger,et al. Quantum implications : essays in honour of David Bohm , 1988 .
[27] DIFFERENTIAL CALCULI ON COMMUTATIVE ALGEBRAS , 1994, hep-th/9412069.
[28] A. Mallios. Geometry of vector sheaves , 1998 .
[29] I. Raptis. Algebraic Quantization of Causal Sets , 1999, gr-qc/9906103.
[30] Bombelli,et al. Space-time as a causal set. , 1987, Physical review letters.
[31] Roberto Torretti,et al. Relativity and geometry , 1984 .
[32] James C. Lopresto. The geometry of space and time. , 1987 .
[33] R. R. Zapatrin,et al. Finitary Algebraic Superspace , 1997 .
[34] Non-Commutative Topology for Curved Quantum Causality , 2001, gr-qc/0101082.
[35] E. Zeeman. Causality Implies the Lorentz Group , 1964 .
[36] R. Zapatrin. Pre-Regge calculus: Topology via logic , 1993 .
[37] C. Isham. An Introduction to General Topology and Quantum Topology , 1990 .
[38] Joan Wick Pelletier,et al. On the quantisation of points , 2001 .