Algebraic description of spacetime foam

A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.

[1]  G. Landi,et al.  Projective Systems of Noncommutative Lattices as a Pregeometric Substratum , 1998, math-ph/9810011.

[2]  T. Regge General relativity without coordinates , 1961 .

[3]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[4]  A. Mallios Geometry of Vector Sheaves: An Axiomatic Approach To Differential Geometry Volume Ii: Geometry. Examples And Applications , 1998 .

[5]  Quantization of Discretized Spacetimes and theCorrespondence Principle , 1999, gr-qc/9904079.

[6]  C. Isham Quantum topology and quantisation on the lattice of topologies , 1989 .

[7]  Albert Einstein,et al.  Physics and reality , 1936 .

[8]  R. Sorkin Spacetime and causal sets. , 1991 .

[9]  R. Sorkin,et al.  Classical sequential growth dynamics for causal sets , 1999, gr-qc/9904062.

[10]  Differential Structure of Greechie Logics , 1999, quant-ph/9902065.

[11]  A Specimen of Theory Construction from Quantum Gravity , 1995, gr-qc/9511063.

[12]  P. Żupránski,et al.  Structure of theP11(1440MeV) resonance from α-pand π-Nscattering , 1999 .

[13]  L. Crane Clock and category: Is quantum gravity algebraic? , 1995, gr-qc/9504038.

[14]  Incidence algebras of simplicial complexes , 2000, math/0001065.

[15]  A. Einstein Physik und realität , 1936 .

[16]  D. Finkelstein “Superconducting” causal nets , 1988 .

[17]  A. Einstein The Meaning of Relativity , 1946 .

[18]  D. Finkelstein,et al.  General Covariance is Bose-Einstein Statistics , 1999 .

[19]  R. Sorkin Finitary substitute for continuous topology , 1991 .

[20]  Finitary Spacetime Sheaves , 2000, gr-qc/0102108.

[21]  Joan Wick Pelletier,et al.  On the quantisation of spaces , 2002 .

[22]  N. Steenrod,et al.  Foundations of Algebraic Topology , 1952 .

[23]  I. Raptis,et al.  Finitary Spacetime Sheaves of Quantum Causal Sets: Curving Quantum Causality , 2001, gr-qc/0102097.

[24]  C. Isham,et al.  Some Possible Roles for Topos Theory in Quantum Theory and Quantum Gravity , 1999, gr-qc/9910005.

[25]  David Finkelstein,et al.  SPACE--TIME CODE. , 1969 .

[26]  A. Zeilinger,et al.  Quantum implications : essays in honour of David Bohm , 1988 .

[27]  DIFFERENTIAL CALCULI ON COMMUTATIVE ALGEBRAS , 1994, hep-th/9412069.

[28]  A. Mallios Geometry of vector sheaves , 1998 .

[29]  I. Raptis Algebraic Quantization of Causal Sets , 1999, gr-qc/9906103.

[30]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[31]  Roberto Torretti,et al.  Relativity and geometry , 1984 .

[32]  James C. Lopresto The geometry of space and time. , 1987 .

[33]  R. R. Zapatrin,et al.  Finitary Algebraic Superspace , 1997 .

[34]  Non-Commutative Topology for Curved Quantum Causality , 2001, gr-qc/0101082.

[35]  E. Zeeman Causality Implies the Lorentz Group , 1964 .

[36]  R. Zapatrin Pre-Regge calculus: Topology via logic , 1993 .

[37]  C. Isham An Introduction to General Topology and Quantum Topology , 1990 .

[38]  Joan Wick Pelletier,et al.  On the quantisation of points , 2001 .