1. Hardy Spaces on the Unit Disc 1 1.1. Review from complex analysis 1 1.2. Hardy spaces 5 1.3. Harmonic Hardy classes 7 1.4. Fatou’s theorem 9 1.5. The zero sets of functions in Hp 13 1.6. Boundary behaviour of functions in Hardy spaces 16 1.7. The Cauchy–Szego projection 19 2. Bergman spaces on the unit disc 22 2.1. Function spaces with reproducing kernel 22 2.2. The Bergman spaces 25 2.3. Biholomorphic invariance 28 2.4. Lp-boundedness of a family of integral operators 29 2.5. The Bergman kernel and projection on the unit disc 33 3. The Paley–Weiner and Bernstein spaces 35 3.1. The Fourier transform 35 3.2. The Paley–Wiener theorems 40 3.3. The Paley–Wiener spaces 45 3.4. The Bernstein spaces 49 4. Function theory on the upper half plane 51 4.1. Hardy spaces on the upper-half plane 51 4.2. Factorization and boundary behaviour of functions in Hp(U). 54 4.3. H2 and the Paley–Wiener theorem revisited 55 4.4. H1, the atomic decomposition and the space of bounded mean oscillations 55 4.5. Weighted Bergman spaces on the upper-half plane 55 4.6. The Paley–Wiener theorem for Bergman spaces 55 5. Further topics 56 5.1. Hardy spaces on tube domains in Cn 56 5.2. Weighted Bergman spaces on the unit ball in Cn 56 5.3. The Cauchy integral along Lipschitz curves 56 5.4. Real variable Hardy spaces 56 5.5. Hankel and Toeplitz operators 56 References 56
[1]
K. Hoffman.
Banach Spaces of Analytic Functions
,
1962
.
[2]
E. Stein,et al.
Introduction to Fourier Analysis on Euclidean Spaces.
,
1971
.
[3]
J. Cooper.
SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS
,
1973
.
[4]
S. Krantz.
Function theory of several complex variables
,
1982
.
[5]
S. Axler,et al.
Harmonic Function Theory
,
1992
.
[6]
Steven G. Krantz,et al.
Function Theory of Several Complex Variables: Second Edition
,
2001
.
[7]
R. Young,et al.
An introduction to non-harmonic Fourier series
,
2001
.
[8]
Kehe Zhu,et al.
Spaces of Holomorphic Functions in the Unit Ball
,
2005
.
[9]
J. Garnett,et al.
Bounded Analytic Functions
,
2006
.
[10]
G. Étienne.
By the same author
,
2014
.
[11]
Hyunjoong Kim,et al.
Functional Analysis I
,
2017
.