Elastic and thermal properties of fluoride and oxide analogues in the rocksalt, fluorite, rutile and perovskite structures

Abstract Fluorides are considered as models for the physical properties of oxides on the basis of Goldschmidt's crystal chemical arguments. The well-established bulk modulus (K)-volume (V) relationship KV = constant is sddddhown to hold for fluorides and oxides belonging to the four isostructural series. The bulk moduli of equivolume oxides and fluorides are scaled as 4S2, where S = ZO/2ZF is the ratio of the effective unit charges and is approximately 77% for all of the crystal structures. The fluorides have distinctly lower melting and Debye temperatures which offers the possibility of using these compounds as models for the high-temperature elastic behaviour of their oxide analogues.

[1]  R. D. Shannon,et al.  Revised values of effective ionic radii , 1970 .

[2]  S. Haussühl Elastisches und thermoelastisches Verhalten von MgF2 und MnF2 , 1968 .

[3]  R. A. Bartels,et al.  BaO single crystal elastic constants and their temperature dependence , 1973 .

[4]  D. L. Anderson A Seismic Equation of State , 1967 .

[5]  E. F. Osborn,et al.  Fluoride Model Systems: IV, The Systems LiF‐BeF2 and PbF2‐BeF2 , 1954 .

[6]  J. Axe,et al.  Infrared Dielectric Dispersion and Lattice Dynamics of Uranium Dioxide and Thorium Dioxide , 1966 .

[7]  J. Axe Long-Wave Lattice Dynamics of the Fluorite Structure , 1965 .

[8]  O. Anderson,et al.  The bulk modulus-volume relationship for oxide compounds and related geophysical problems , 1965 .

[9]  J. T. Lewis,et al.  Elastic Constants of the Alkali Halides at 4.2°K , 1967 .

[10]  D. Gerlich Elastic Constants of Strontium Fluoride Between 4.2 and 300°K , 1964 .

[11]  E. Thilo,et al.  Chemische Untersuchungen von Silikaten. XII. Über das System LiFBeF2 und seine Beziehungen zum System MgOSiO2 , 1949 .

[12]  R. Liebermann,et al.  Elastic properties of polycrystalline SnO2 and GeO2: comparison with stishovite and rutile data , 1973 .

[13]  Gene Simmons,et al.  Elasticity of some mantle crystal structures: 2. Rutile GeO2 , 1973 .

[14]  K. S. Aleksandrov,et al.  Behaviour of the elastic constants of KMnF3 single crystals near the transition of puckering , 1966 .

[15]  M. E. Striefler,et al.  Elastic and optical properties of rutile-structure fluorides in the rigid-ion approximation , 1973 .

[16]  R. Roth,et al.  Classification of perovskite and other ABO3-type compounds , 1957 .

[17]  C. Squire,et al.  Elastic Constants of LiF from 4.2°K to 300°K by Ultrasonic Methods , 1957 .

[18]  A. E. Ringwood,et al.  Phase transformations and the constitution of the mantle , 1970 .

[19]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[20]  R. Miller,et al.  Elastic Constants of KF from 300° to 4.2°K , 1967 .

[21]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[22]  Hitoshi Mizutani,et al.  Elastic‐wave velocities of polycrystalline stishovite , 1972 .

[23]  K. Knox,et al.  MAGNETIC PROPERTIES OF KMnF$sub 3$. I. CRYSTALLOGRAPHIC STUDIES , 1961 .

[24]  R. S. Roth,et al.  SOLID-STATE REACTIONS AND DIELECTRIC PROPERTIES IN THE SYSTEM MAGNESIA-LIME- TIN OXIDE-TITANIA , 1955 .

[25]  Murli H. Manghnani,et al.  Temperature dependence of the elastic constants of single-crystal rutile between 4° and 583°K* , 1972 .

[26]  Arthur S. Ritchie,et al.  Handbook of Physical Constants , 1967 .

[27]  G. Rupprecht,et al.  THE ELASTIC CONSTANTS OF STRONTIUM TITANATE , 1963 .

[28]  R. Kearney,et al.  Elastic Constants of SrO , 1970 .

[29]  P. Debye Zur Theorie der spezifischen Wärmen , 1912 .

[30]  D. Turcotte The Nature of the Solid Earth , 1972 .

[31]  D. Schuele,et al.  Pressure and temperature derivatives of the elastic constants of caF2 and BaF2 , 1968 .

[32]  D. Huffman,et al.  Specific Heat and Elastic Constants of Calcium Fluoride at Low Temperatures , 1960 .

[33]  J. Wasilik,et al.  Elastic Constants of Cubic Lead Fluoride at Room Temperature , 1965 .

[34]  D. O. Pederson,et al.  Elastic Constants of RbF from 300 to 4.2 K , 1972 .

[35]  W. Capps,et al.  Elastic Constants of Single Crystal Tho2 at 25°C , 1964 .

[36]  E. F. Osborn,et al.  Fluoride Model Systems: III, The System NaF–BeF2 and the Polymorphism of Na2BeF4 and BeF2 , 1953 .

[37]  W. Ludwig,et al.  Theory of Anharmonic Effects in Crystals , 1961 .

[38]  Don L. Anderson,et al.  Brief report: The bulk modulus‐volume relationship for oxides , 1970 .

[39]  R. D. Shannon,et al.  Effective ionic radii in oxides and fluorides , 1969 .

[40]  Thomas J. Ahrens,et al.  Application of the fourth-order anharmonic theory to the prediction of equations of state at high compressions and temperatures. , 1972 .

[41]  A. Smith The system cadmium oxide–stannic oxide , 1960 .

[42]  Naohiro Soga,et al.  A restriction to the law of corresponding states , 1967 .

[43]  P. R. Son,et al.  CaO and SrO single crystal elastic constants and their pressure derivatives , 1972 .

[44]  L. Thomsen On the effects of pressure upon rock elasticity , 1972 .

[45]  G. Davies,et al.  Quasi-harmonic finite strain equations of state of solids* , 1973 .

[46]  O. Anderson,et al.  Pressure Derivatives of Elastic Constants of Single‐Crystal MgO at 23° and ‐195.8°C , 1966 .

[47]  R. A. Miller,et al.  Pressure derivatives of the elastic constants of LiF and NaF , 1964 .

[48]  D. I. Bolef,et al.  Ultrasonic Propagation in RbMnF3. I. Elastic Properties , 1969 .