Model-based trajectory reconstruction with IMM smoothing and segmentation

Abstract This paper presents a new approach for off-line trajectory reconstruction in air traffic control domain. The proposed algorithm, called model-based reconstruction, performs an accurate IMM smoothing process whose parameters are modified along time according to the flight modes segmented from trajectory measurements. Its competitive performance is demonstrated through comparison with previous reconstruction methods used in ATC and with classical IMM smoothing, using simulated data.

[1]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[2]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[3]  Jesús García,et al.  Model-based trajectory reconstruction using IMM smoothing and motion pattern identification , 2007, 2007 10th International Conference on Information Fusion.

[4]  Thiagalingam Kirubarajan,et al.  Precision large scale air traffic surveillance using IMM/assignment estimators , 1999 .

[5]  Simon J. Godsill,et al.  Improved Particle Approximations to the Joint Smoothing Distribution Using Markov Chain Monte Carlo , 2013, IEEE Transactions on Signal Processing.

[6]  C.H. Lee A phase space spline smoother for fitting trajectories , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  Stefano Coraluppi,et al.  Recursive track fusion for multi-sensor surveillance , 2004, Inf. Fusion.

[8]  Hans Wehn,et al.  A distributed information fusion testbed for coastal surveillance , 2007, 2007 10th International Conference on Information Fusion.

[9]  J. G. Herrero,et al.  Use of map information for tracking targets on airport surface , 2003 .

[10]  Henk A. P. Blom,et al.  Jump linear model-based aircraft trajectory reconstruction , 1994, Defense, Security, and Sensing.

[11]  G. de Miguel,et al.  Trajectory reconstruction techniques for evaluation of ATC systems , 2008, 2008 Tyrrhenian International Workshop on Digital Communications - Enhanced Surveillance of Aircraft and Vehicles.

[12]  William Dale Blair,et al.  Fixed-interval smoothing for Markovian switching systems , 1995, IEEE Trans. Inf. Theory.

[13]  Shu-Li Sun,et al.  Multi-sensor optimal fusion fixed-interval Kalman smoothers , 2008, Inf. Fusion.

[14]  Takeaki Kariya,et al.  Generalized Least Squares , 2004 .

[15]  A. Soto,et al.  ATC trajectory reconstruction for automated evaluation of sensor and tracker performance , 2013, IEEE Aerospace and Electronic Systems Magazine.

[16]  Jesús García,et al.  Trajectory classification based on machine-learning techniques over tracking data , 2006, 2006 9th International Conference on Information Fusion.

[17]  B. Gardner,et al.  Tools for analysing the performance of ATC surveillance radars , 1998 .

[18]  Jouko Lampinen,et al.  Rao-Blackwellized particle filter for multiple target tracking , 2007, Inf. Fusion.

[19]  Wolfgang Konle Track data smoothing for air traffic simulation , 2011, GI-Jahrestagung.

[20]  Chris Helleur,et al.  Track modeling for maritime surveillance , 2008, 2008 11th International Conference on Information Fusion.

[21]  Henk A. P. Blom,et al.  Time-reversion of a hybrid state stochastic difference system with a jump-linear smoothing application , 1990, IEEE Trans. Inf. Theory.

[22]  William Dale Blair,et al.  Fixed-lag alpha-beta filter for target trajectory smoothing , 2004 .

[23]  J. Renes,et al.  Flightpath reconstruction and systematic radar error estimation from multi-radar range-azimuth measurements , 1985, 1985 24th IEEE Conference on Decision and Control.

[24]  Branko Ristic,et al.  On target classification using kinematic data , 2004, Inf. Fusion.

[25]  Huaiqing Wang,et al.  Novel Online Methods for Time Series Segmentation , 2008, IEEE Transactions on Knowledge and Data Engineering.

[26]  Kazuhito Yokoi,et al.  A high stability, smooth walking pattern for a biped robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[27]  J.A. Besada,et al.  Design of IMM filter for radar tracking using evolution strategies , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[28]  Hans Driessen,et al.  Multitarget Tracking With Multiscan Knowledge Exploitation Using Sequential MCMC Sampling , 2013, IEEE Journal of Selected Topics in Signal Processing.

[29]  Yingmin Jia,et al.  Rao-Blackwellised particle filtering and smoothing for jump Markov non-linear systems with mode observation , 2013, IET Signal Process..

[30]  Eamonn J. Keogh,et al.  Segmenting Time Series: A Survey and Novel Approach , 2002 .

[31]  W. Badawy,et al.  A smoothing Rao-Blackwellized particle filter for tracking a highly-maneuverable target , 2005, IEEE International Radar Conference, 2005..

[32]  Luis A. Aguirre,et al.  Flight path reconstruction – A comparison of nonlinear Kalman filter and smoother algorithms , 2011 .

[33]  Wolfgang Koch,et al.  Fixed-interval retrodiction approach to Bayesian IMM-MHT for maneuvering multiple targets , 2000, IEEE Trans. Aerosp. Electron. Syst..

[34]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Bing Chen,et al.  Interacting multiple model fixed-lag smoothing algorithm for Markovian switching systems , 2000, IEEE Trans. Aerosp. Electron. Syst..

[36]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[37]  Ana M. Bernardos Barbolla,et al.  Generic multisensor multitarget bias estimation architecture , 2012 .

[38]  S. Takahashi,et al.  Optimal control theoretic splines and its application to mobile robot , 2004, Proceedings of the 2004 IEEE International Conference on Control Applications, 2004..

[39]  Juan A. Besada,et al.  Generic multisensor multitarget bias estimation architecture , 2012 .

[40]  José M. Molina López,et al.  Application of Evolution Strategies to the Design of Tracking Filters with a Large Number of Specifications , 2003, EURASIP J. Adv. Signal Process..

[41]  Yangsheng Xu,et al.  Trajectory fitting with smoothing splines using velocity information , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).