Measuring the Tangle of Three-Qubit States

We present a quantum circuit that transforms an unknown three-qubit state into its canonical form, up to relative phases, given many copies of the original state. The circuit is made of three single-qubit parametrized quantum gates, and the optimal values for the parameters are learned in a variational fashion. Once this transformation is achieved, direct measurement of outcome probabilities in the computational basis provides an estimate of the tangle, which quantifies genuine tripartite entanglement. We perform simulations on a set of random states under different noise conditions to asses the validity of the method.

[1]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[2]  P. Knight,et al.  Entangled quantum systems and the Schmidt decomposition , 1995 .

[3]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[4]  P. Agrawal,et al.  Distinguishing different classes of entanglement of three-qubit pure states , 2017, The European Physical Journal D.

[5]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[6]  M. S. Leifer,et al.  Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.

[7]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[8]  Patrick J. Coles,et al.  Variational quantum state diagonalization , 2018, npj Quantum Information.

[9]  A. Rényi On Measures of Entropy and Information , 1961 .

[10]  Tarrach,et al.  Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical Review Letters.

[11]  B. Kraus,et al.  Local unitary equivalence of multipartite pure states. , 2009, Physical review letters.

[12]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[13]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[14]  N. Laflorencie,et al.  Quantum entanglement in condensed matter systems , 2015, 1512.03388.

[15]  A. Sudbery On local invariants of pure three-qubit states , 2000, quant-ph/0001116.

[16]  R. Radner PROCEEDINGS of the FOURTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY , 2005 .

[17]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[18]  Diego Garc'ia-Mart'in,et al.  Quantum singular value decomposer , 2019, 1905.01353.

[19]  Karol Zyczkowski,et al.  Entanglement of Three-Qubit Random Pure States , 2018, Entropy.

[20]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[21]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[22]  Existence of the Schmidt decomposition for tripartite systems , 1999, quant-ph/9911073.

[23]  Arthur Cayley,et al.  The Collected Mathematical Papers: ARTHUR CAYLEY , 1889 .

[24]  J. I. Latorre,et al.  A short review on entanglement in quantum spin systems , 2009, 0906.1499.

[25]  A. Peres HIGHER ORDER SCHMIDT DECOMPOSITIONS , 1995, quant-ph/9504006.

[26]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[27]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[28]  G. Crooks On Measures of Entropy and Information , 2015 .