Measuring the Tangle of Three-Qubit States
暂无分享,去创建一个
Diego Garc'ia-Mart'in | Adri'an P'erez-Salinas | Carlos Bravo-Prieto | Jos'e I. Latorre | J. Latorre | Carlos Bravo-Prieto | D. Garc'ia-Mart'in | Adri'an P'erez-Salinas
[1] Travis S. Humble,et al. Quantum supremacy using a programmable superconducting processor , 2019, Nature.
[2] P. Knight,et al. Entangled quantum systems and the Schmidt decomposition , 1995 .
[3] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[4] P. Agrawal,et al. Distinguishing different classes of entanglement of three-qubit pure states , 2017, The European Physical Journal D.
[5] Danna Zhou,et al. d. , 1934, Microbial pathogenesis.
[6] M. S. Leifer,et al. Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.
[7] M. J. D. Powell,et al. An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..
[8] Patrick J. Coles,et al. Variational quantum state diagonalization , 2018, npj Quantum Information.
[9] A. Rényi. On Measures of Entropy and Information , 1961 .
[10] Tarrach,et al. Generalized schmidt decomposition and classification of three-quantum-Bit states , 2000, Physical Review Letters.
[11] B. Kraus,et al. Local unitary equivalence of multipartite pure states. , 2009, Physical review letters.
[12] K. Życzkowski,et al. Geometry of Quantum States , 2007 .
[13] Daniel A. Lidar,et al. Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.
[14] N. Laflorencie,et al. Quantum entanglement in condensed matter systems , 2015, 1512.03388.
[15] A. Sudbery. On local invariants of pure three-qubit states , 2000, quant-ph/0001116.
[16] R. Radner. PROCEEDINGS of the FOURTH BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY , 2005 .
[17] Joel Nothman,et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.
[18] Diego Garc'ia-Mart'in,et al. Quantum singular value decomposer , 2019, 1905.01353.
[19] Karol Zyczkowski,et al. Entanglement of Three-Qubit Random Pure States , 2018, Entropy.
[20] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[21] D. A. Edwards. The mathematical foundations of quantum mechanics , 1979, Synthese.
[22] Existence of the Schmidt decomposition for tripartite systems , 1999, quant-ph/9911073.
[23] Arthur Cayley,et al. The Collected Mathematical Papers: ARTHUR CAYLEY , 1889 .
[24] J. I. Latorre,et al. A short review on entanglement in quantum spin systems , 2009, 0906.1499.
[25] A. Peres. HIGHER ORDER SCHMIDT DECOMPOSITIONS , 1995, quant-ph/9504006.
[26] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[27] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[28] G. Crooks. On Measures of Entropy and Information , 2015 .