SPITZER EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN η CORVI At ∼1 Gyr

We have analyzed Spitzer and NASA/IRTF 2 - 35 \mum spectra of the warm, ~350 K circumstellar dust around the nearby MS star {\eta} Corvi (F2V, 1.4 \pm 0.3 Gyr). The spectra show clear evidence for warm, water- and carbon-rich dust at ~3 AU from the central star, in the system's Terrestrial Habitability Zone. Spectral features due to ultra-primitive cometary material were found, in addition to features due to impact produced silica and high temperature carbonaceous phases. At least 9 x 10^18 kg of 0.1 - 100 \mum warm dust is present in a collisional equilibrium distribution with dn/da ~ a^-3.5, the equivalent of a 130 km radius KBO of 1.0 g/cm^3 density and similar to recent estimates of the mass delivered to the Earth at 0.6 - 0.8 Gyr during the Late Heavy Bombardment. We conclude that the parent body was a Kuiper-Belt body or bodies which captured a large amount of early primitive material in the first Myrs of the system's lifetime and preserved it in deep freeze at ~150 AU. At ~1.4 Gyr they were prompted by dynamical stirring of their parent Kuiper Belt into spiraling into the inner system, eventually colliding at 5-10 km/sec with a rocky planetary body of mass \leq MEarth at ~3 AU, delivering large amounts of water (>0.1% of MEarth's Oceans) and carbon-rich material. The Spitzer spectrum also closely matches spectra reported for the Ureilite meteorites of the Sudan Almahata Sitta fall in 2008, suggesting that one of the Ureilite parent bodies was a KBO.

[1]  Space Science Reviews , 1962, Nature.

[2]  W. D. Vacca,et al.  THE INFRARED TELESCOPE FACILITY (IRTF) SPECTRAL LIBRARY: COOL STARS , 2009, 0909.0818.

[3]  J. Farihi,et al.  Infrared Emission from the Dusty Disk Orbiting GD 362, an Externally Polluted White Dwarf , 2007 .

[4]  K. H. Kim,et al.  The Dust and Gas Around β Pictoris , 2007, 0705.3023.

[5]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[6]  A. Tsuchiyama,et al.  Compositional dependence of infrared absorption spectra of crystalline silicates - I. Mg–Fe pyroxenes , 2002 .

[7]  K. H. Kim,et al.  The Dust and Gas Around Beta Pictoris , 2007 .

[8]  P. Farinella,et al.  Short-Period Comets: Primordial Bodies or Collisional Fragments? , 1996, Science.

[9]  F. Poulet,et al.  Is Sedna another Triton , 2005 .

[10]  Ralf Jaumann,et al.  Compositional maps of Saturn's moon Phoebe from imaging spectroscopy , 2005, Nature.

[11]  M. Payne,et al.  Collisional evolution of eccentric planetesimal swarms , 2009, 0910.4725.

[12]  F. Westall Morphological Biosignatures in Early Terrestrial and Extraterrestrial Materials , 2008 .

[13]  Samuel H. Moseley,et al.  Infrared Observations of Comets by COBE , 1998 .

[14]  K. Enya,et al.  HOT DEBRIS DUST AROUND HD 106797 , 2009, 0903.1333.

[15]  D. J. Lien,et al.  Dust in comets. I, Thermal properties of homogeneous and heterogeneous grains , 1990 .

[16]  Jan Cami,et al.  Detection of C60 and C70 in a Young Planetary Nebula , 2010, Science.

[17]  D. J. Barry,et al.  Advanced Optimal Extraction for the Spitzer/IRS , 2009, 0910.1846.

[18]  J. Rho,et al.  Explosion of Comet 17P/Holmes as revealed by the Spitzer Space Telescope , 2010, 1001.4161.

[19]  S. Wolf,et al.  FORMATION AND EVOLUTION OF PLANETARY SYSTEMS: PROPERTIES OF DEBRIS DUST AROUND SOLAR-TYPE STARS , 2008, 0810.1003.

[20]  Sei‐ichiro Watanabe,et al.  Dust ring formation due to ice sublimation of radially drifting dust particles under the Poynting–Robertson effect in debris disks , 2008 .

[21]  B. Zuckerman,et al.  Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star , 2005, Nature.

[22]  M. Cintala,et al.  An analysis of differential impact melt‐crater scaling and implications for the terrestrial impact record , 1992 .

[23]  D. Lis,et al.  Outgassing Behavior and Composition of Comet C/1999 S4 (LINEAR) During Its Disruption , 2001, Science.

[24]  J. Schmitt,et al.  ROSAT All-Sky Survey Observations of the Hyades , 1995 .

[25]  D. Brownlee,et al.  Identification of iron sulphide grains in protoplanetary disks , 2002, Nature.

[26]  W. Ip,et al.  Liquid water on Enceladus from observations of ammonia and 40Ar in the plume , 2009, Nature.

[27]  K. P. Klaasen,et al.  Exposed Water Ice Deposits on the Surface of Comet 9P/Tempel 1 , 2006, Science.

[28]  David E. Trilling,et al.  Decay of Planetary Debris Disks , 2005 .

[29]  Pasadena,et al.  SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. I. THE FREQUENCY OF YOUNG DEBRIS DISKS AT 5 Myr , 2009, 0910.3884.

[30]  U. Jørgensen,et al.  The Earth-Moon system during the Late Heavy Bombardment period , 2009, 0907.4104.

[31]  Astronomy,et al.  The Rise and Fall of Debris Disks: MIPS Observations of h and χ Persei and the Evolution of Mid-IR Emission from Planet Formation , 2007, 0709.2510.

[32]  C. Clarke,et al.  Debris disk size distributions: steady state collisional evolution with Poynting-Robertson drag and other loss processes , 2011, 1103.5499.

[33]  D. A. Papanastassiou,et al.  Isotopic evidence for a terminal lunar cataclysm , 1974 .

[34]  Wayne S. Holland,et al.  Submillimeter Observations of an Asymmetric Dust Disk around Fomalhaut , 2003 .

[35]  T. Löhne,et al.  Long-Term Collisional Evolution of Debris Disks , 2007, 0710.4294.

[36]  S. Sandford,et al.  Mineralogy and petrography of the Almahata Sitta ureilite , 2010 .

[37]  L. Girardi,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.

[38]  Peter Plavchan,et al.  SPITZER MID-IR SPECTRA OF DUST DEBRIS AROUND A AND LATE B TYPE STARS: ASTEROID BELT ANALOGS AND POWER-LAW DUST DISTRIBUTIONS , 2009 .

[39]  J. Liou,et al.  Signatures of the Giant Planets Imprinted on the Edgeworth-Kuiper Belt Dust Disk , 1999 .

[40]  H. Melosh,et al.  Deep Impact: Excavating Comet Tempel 1 , 2005, Science.

[41]  M. E. Brown,et al.  THE SIZE, DENSITY, AND FORMATION OF THE ORCUS–VANTH SYSTEM IN THE KUIPER BELT , 2009, 0910.4784.

[42]  J. Chambers Planetary accretion in the inner Solar System , 2004 .

[43]  M. Wyatt Dust in Resonant Extrasolar Kuiper Belts: Grain Size and Wavelength Dependence of Disk Structure , 2005, astro-ph/0511219.

[44]  S. Udry,et al.  Extrasolar planets and brown dwarfs around A-F type stars. VI. High precision RV survey of early type dwarfs with HARPS , 2008, 0809.4636.

[45]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[46]  S. Sandford,et al.  The mid‐infrared transmission spectra of multiple stones from the Almahata Sitta meteorite , 2010 .

[47]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[48]  To appear in The Astrophysical Journal An Excess Due to Small Grains Around The Nearby K0V Star HD69830: Asteroid or Cometary Debris? , 2005 .

[49]  Mark J. Cintala,et al.  Scaling impact melting and crater dimensions: Implications for the lunar cratering record , 1998 .

[50]  C. Goodrich Ureilites - A critical review , 1992 .

[51]  Harold F. Levison,et al.  THE FORMATION OF URANUS AND NEPTUNE AMONG JUPITER AND SATURN , 2001, astro-ph/0111290.

[52]  Caltech,et al.  THE LAST GASP OF GAS GIANT PLANET FORMATION: A SPITZER STUDY OF THE 5 Myr OLD CLUSTER NGC 2362 , 2009, 0903.2666.

[53]  K. Stapelfeldt,et al.  EPSILON ERIDANI'S PLANETARY DEBRIS DISK: STRUCTURE AND DYNAMICS BASED ON SPITZER AND CALTECH SUBMILLIMETER OBSERVATORY OBSERVATIONS , 2008, 0810.4564.

[54]  Marc J. Kuchner,et al.  A NEW ALGORITHM FOR SELF-CONSISTENT THREE-DIMENSIONAL MODELING OF COLLISIONS IN DUSTY DEBRIS DISKS , 2009, 0909.2227.

[55]  David A. Kring,et al.  Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga , 2002 .

[56]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[57]  M. Barlow,et al.  Detection of carbonates in dust shells around evolved stars , 2002, Nature.

[58]  SCUBA observations of dust around Lindroos stars: evidence for a substantial submillimetre disc population , 2003, astro-ph/0303114.

[59]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[60]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[61]  R. Smith,et al.  Resolving the hot dust around HD69830 and η Corvi with MIDI and VISIR , 2009, 0906.3704.

[62]  R. Smith,et al.  The nature of mid-infrared excesses from hot dust around Sun-like stars , 2008, 0804.4580.

[63]  Amy Bonsor,et al.  Dynamical effects of stellar mass-loss on a Kuiper-like belt , 2011, 1102.3185.

[64]  Grant Kennedy,et al.  Resolving debris discs in the far-infrared: Early highlights from the DEBRIS survey , 2010, 1005.5147.

[65]  B. Cohen,et al.  Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. , 2000, Science.

[66]  M. Zolensky,et al.  Thermal and fragmentation history of ureilitic asteroids: Insights from the Almahata Sitta fall , 2010 .

[67]  Submillimeter Images of a Dusty Kuiper Belt around η Corvi , 2004, astro-ph/0411061.

[68]  G. Rieke,et al.  Spitzer IRAC and JHKs Observations of h and χ Persei: Constraints on Protoplanetary Disk and Massive Cluster Evolution at ~107 Years , 2007, astro-ph/0701441.

[69]  Mullard Space Science Laboratory,et al.  A Dust Ring around epsilon Eridani: Analog to the Young Solar System , 1998, astro-ph/9808224.

[70]  Marc J. Kuchner,et al.  COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD , 2010, 1008.0904.

[71]  M. Wolff,et al.  INFRARED SPECTROSCOPY OF COMET 73P/SCHWASSMANN-WACHMANN 3 USING THE SPITZER SPACE TELESCOPE , 2005, 1107.2071.

[72]  M. Hanner A comparison of the dust properties in recent periodic comets , 1984 .

[73]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[74]  W. Benz,et al.  The Origin of Mercury , 2007 .

[75]  Brian Carcich,et al.  A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density , 2007 .

[76]  B. Zuckerman,et al.  THE ABSENCE OF COLD DUST AND THE MINERALOGY AND ORIGIN OF THE WARM DUST ENCIRCLING BD +20 307 , 2010, 1010.6218.

[77]  M. Zolensky,et al.  Almahata Sitta (=asteroid 2008 TC3) and the search for the ureilite parent body , 2010 .

[78]  N. Tomioka,et al.  Heating effects of the matrix of experimentally shocked Murchison CM chondrite: Comparison with micrometeorites , 2007 .

[79]  Graham Ryder,et al.  Bombardment of the Hadean Earth: wholesome or deleterious? , 2003, Astrobiology.

[80]  Collisional processes in extrasolar planetesimal discs – dust clumps in Fomalhaut's debris disc , 2002, astro-ph/0204034.

[81]  John T. Rayner,et al.  Spextool: A Spectral Extraction Package for SpeX, a 0.8–5.5 Micron Cross‐Dispersed Spectrograph , 2004 .

[82]  B. Zuckerman,et al.  Warm Dust in the Terrestrial Planet Zone of a Sun-like Pleiades Star: Collisions between Planetary Embryos? , 2007, 0711.2111.

[83]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[84]  H. Melosh,et al.  EPOXI at Comet Hartley 2 , 2011, Science.

[85]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[86]  T. Ahrens,et al.  Impact and explosion crater ejecta, fragment size, and velocity , 1985 .

[87]  K. Y. L. Su,et al.  accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 2/19/04 DEBRIS DISK EVOLUTION AROUND A STARS , 2006 .

[88]  Sei‐ichiro Watanabe,et al.  Dust ring formation due to sublimation of dust grains drifting radially inward by the Poynting–Robertson drag: An analytical model , 2009 .

[89]  Abundant Circumstellar Silica Dust and SiO Gas Created by a Giant Hypervelocity Collision in the ~12 Myr HD172555 System , 2009, 0906.2536.

[90]  C. Kaito,et al.  Laboratory production of magnesium sulfide grains and their characteristic infrared spectra due to shape , 2005 .

[91]  Ted von Hippel,et al.  THE DUST CLOUD AROUND THE WHITE DWARF G 29-38. II. SPECTRUM FROM 5 TO 40 μm AND MID-INFRARED PHOTOMETRIC VARIABILITY , 2008, 0810.3276.

[92]  A. Brandeker,et al.  Survival of icy grains in debris discs. The role of photosputtering , 2007, 0709.0811.

[93]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[94]  C. Chen,et al.  Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766 , 2007, 0710.0839.

[95]  O. Aharonson,et al.  Geophysical consequences of planetary-scale impacts into a Mars-like planet , 2011 .

[96]  P. Mezger The “Astronomy and Astrophysics” Division of the European Physical Society , 1973 .

[97]  Hajime Yano,et al.  Mineralogy and Petrology of Comet 81P/Wild 2 Nucleus Samples , 2006, Science.

[98]  S. Kenyon,et al.  VARIATIONS ON DEBRIS DISKS. II. ICY PLANET FORMATION AS A FUNCTION OF THE BULK PROPERTIES AND INITIAL SIZES OF PLANETESIMALS , 2009, 0911.4129.

[99]  C. Chapman,et al.  What are the real constraints on the existence and magnitude of the late heavy bombardment , 2007 .

[100]  C. Lisse,et al.  Comparison of the composition of the Tempel 1 ejecta to the dust in Comet C/Hale-Bopp 1995 O1 and YSO HD 100546 , 2007 .

[101]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[102]  J. Baker,et al.  Contamination and melt aggregation processes in continental flood basalts: constraints from melt inclusions in Oligocene basalts from Yemen , 2002 .

[103]  A. Pati,et al.  Lithium and rotation in F and G dwarfs and subgiants , 2003 .

[104]  M. C. Wyatt,et al.  HOW OBSERVATIONS OF CIRCUMSTELLAR DISK ASYMMETRIES CAN REVEAL HIDDEN PLANETS : PERICENTER GLOW AND ITS APPLICATION TO THE HR 4796 DISK , 1999 .

[105]  H Germany,et al.  A Method of Correcting Near‐Infrared Spectra for Telluric Absorption , 2002, astro-ph/0211255.

[106]  M. C. Wyatt,et al.  On the Nature of the Dust in the Debris Disk around HD 69830 , 2006, astro-ph/0611452.

[107]  K. J. Meech,et al.  Spitzer Spectral Observations of the Deep Impact Ejecta , 2006, Science.

[108]  E. Serabyn,et al.  Exo--Zodiacal Dust Levels for Nearby Main Sequence Stars , 2011 .

[109]  M. Köhler,et al.  Mid‐infrared spectroscopy of refractory inclusions (CAIs) in CV and CO chondrites , 2008 .

[110]  Hubble Fellow,et al.  THE LOW LEVEL OF DEBRIS DISK ACTIVITY AT THE TIME OF THE LATE HEAVY BOMBARDMENT: A SPITZER STUDY OF PRAESEPE , 2009, The Astrophysical Journal.

[111]  Bertrand Mennesson,et al.  EXOZODIACAL DUST LEVELS FOR NEARBY MAIN-SEQUENCE STARS: A SURVEY WITH THE KECK INTERFEROMETER NULLER , 2011 .

[112]  N. Tomioka,et al.  Mid-infrared spectra of the shocked Murchison CM chondrite: Comparison with astronomical observations of dust in debris disks , 2010, 2212.14248.

[113]  M. Meyer,et al.  DEBRIS DISKS IN THE UPPER SCORPIUS OB ASSOCIATION , 2009, 0909.4124.

[114]  Thomas J. Ahrens,et al.  Cometary and meteorite swarm impact on planetary surfaces , 1982 .

[115]  L. Hartmann,et al.  Mid-infrared Spectra of Class I Protostars in Taurus , 2004 .

[116]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[117]  S. H. Moseley,et al.  Laboratory infrared spectra of predicted condensates in carbon-rich stars , 1985 .

[118]  Graham Ryder,et al.  Mass flux in the ancient Earth‐Moon system and benign implications for the origin of life on Earth , 2002 .

[119]  G. Herczeg,et al.  Resolving the Inner Cavity of the HD 100546 Disk: A Candidate Young Planetary System? , 2005 .

[120]  S. Kenyon,et al.  Variations on Debris Disks: Icy Planet Formation at 30-150 AU for 1-3 M☉ Main-Sequence Stars , 2008, 0807.1134.

[121]  Submillimetre observations and modelling of Vega-type stars , 2003, astro-ph/0311593.

[122]  P. Plavchan,et al.  A Spitzer Study of Debris Disks in the Young Nearby Cluster NGC 2232: Icy Planets Are Common around ~1.5-3 M☉ Stars , 2008, 0807.2056.

[123]  Debris disks as signposts of terrestrial planet formation , 2011, 1104.0007.

[124]  C. Koeberl The Cuban Tektite Revisited , 1988 .

[125]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[126]  L. Nittler,et al.  SUPERNOVA SHOCK-WAVE-INDUCED CO-FORMATION OF GLASSY CARBON AND NANODIAMOND , 2011 .

[127]  S. Kenyon,et al.  Detecting the Dusty Debris of Terrestrial Planet Formation , 2004, astro-ph/0401343.

[128]  B. Draine,et al.  Infrared Emission from Interstellar Dust. IV. The Silicate-Graphite-PAH Model in the Post-Spitzer Era , 2006, astro-ph/0608003.

[129]  Dust Processing In Disks Around T Tauri Stars In The Taurus/Auriga Star-forming Region , 2006, astro-ph/0605415.

[130]  B. Zuckerman,et al.  Dusty Debris Disks as Signposts of Planets: Implications for Spitzer Space Telescope , 2003, astro-ph/0311546.

[131]  I. Mann,et al.  Collisional Vaporization of Dust and Production of Gas in the β Pictoris Dust Disk , 2007 .

[132]  C. Clarke,et al.  DEBRIS DISK SIZE DISTRIBUTIONS : STEADY STATE COLLISIONAL EVOLUTION WITH PR DRAG AND OTHER LOSS PROCESSES , 2022 .

[133]  D. Trilling,et al.  Composition of KBO (50000) Quaoar , 2009 .

[134]  Bertrand Mennesson,et al.  51 OPHIUCHUS: A POSSIBLE BETA PICTORIS ANALOG MEASURED WITH THE KECK INTERFEROMETER NULLER , 2009, 0909.1821.

[135]  E. Grün,et al.  A tale of two very different comets: ISO and MSX measurements of dust emission from 126P/IRAS (1996) and 2P/Encke (1997) , 2004 .

[136]  I. Song,et al.  THE AGE OF THE HD 15407 SYSTEM AND THE EPOCH OF FINAL CATASTROPHIC MASS ACCRETION ONTO TERRESTRIAL PLANETS AROUND SUN-LIKE STARS , 2010, 1005.2451.

[137]  K. H. Kim,et al.  SILICA IN PROTOPLANETARY DISKS , 2008, 0811.3590.

[138]  The Disk of ? Pictoris in the Light of Polarimetric Data , 2000 .

[139]  W. Delamere,et al.  Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .

[140]  S. Stern Evidence for a Collisional Mechanism Affecting Kuiper Belt Object Colors , 2002, astro-ph/0206129.

[141]  M. Sephton,et al.  Meteorite ablation products and their contribution to the atmospheres of terrestrial planets: An experimental study using pyrolysis-FTIR , 2009 .

[142]  K. Y. L. Su,et al.  EXPLORATIONS BEYOND THE SNOW LINE: SPITZER/IRS SPECTRA OF DEBRIS DISKS AROUND SOLAR-TYPE STARS , 2009, 0909.0058.

[143]  G. Wetherill Radiometric Chronology of the Early Solar System , 1975 .

[144]  J. R. Houck,et al.  The SMART Data Analysis Package for the Infrared Spectrograph on the Spitzer Space Telescope , 2004, astro-ph/0408295.

[145]  M. C. Wyatt,et al.  RESONANT TRAPPING OF PLANETESIMALS BY PLANET MIGRATION: DEBRIS DISK CLUMPS AND VEGA'S SIMILARITY TO THE SOLAR SYSTEM , 2003 .

[146]  D. Apai,et al.  THE DISCOVERY OF NEW WARM DEBRIS DISKS AROUND F-TYPE STARS , 2009, 0906.1145.

[147]  A. Sicilia-Aguilar,et al.  SPITZER INFRARED SPECTROGRAPH SPECTROSCOPY OF THE 10 Myr OLD EF Cha DEBRIS DISK: EVIDENCE FOR PHYLLOSILICATE-RICH DUST IN THE TERRESTRIAL ZONE , 2011, 1104.1431.

[148]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[149]  M. C. Wyatt,et al.  Debris discs and comet populations around Sun-like stars: the Solar system in context , 2010, 1001.5177.

[150]  P. Warren Lunar rock-rain: Diverse silicate impact-vapor condensates in an Apollo-14 regolith breccia , 2007 .

[151]  A. Tsuchiyama,et al.  Compositional dependence of infrared absorption spectra of crystalline silicate: II. Natural and synthetic olivines , 2003 .

[152]  L. Wilson,et al.  Thermal evolution and physics of melt extraction on the ureilite parent body , 2008 .

[153]  Shigeyuki Sako,et al.  An early extrasolar planetary system revealed by planetesimal belts in β Pictoris , 2004, Nature.