Quantifying the Impact of Spectral Coverage on the Retrieval of Molecular Abundances from Exoplanet Transmission Spectra

Using forward models for representative exoplanet atmospheres and a radiometric instrument model, we have generated synthetic observational data to explore how well the major C- and O-bearing chemical species (CO, CO2, CH4, and H2O), important for determining atmospheric opacity and radiation balance, can be constrained by transit measurements as a function of spectral wavelength coverage. This work features simulations for a notional transit spectroscopy mission and compares two cases for instrument spectral coverage (wavelength coverage from 0.5-2.5 ${\mu}$m and 0.5-5 ${\mu}$m. The simulation is conducted on a grid with a range of stellar magnitudes and incorporates a full retrieval of atmospheric model parameters. We consider a range of planets from sub-Neptunes to hot Jupiters and include both low and high mean molecular weight atmospheres. We find that including the 2.5-5 ${\mu}$m wavelength range provides a significant improvement in the degree of constraint on the retrieved molecular abundances: up to ~3 orders of magnitude for a low mean molecular weight atmosphere (${\mu}$=2.3) and up to a factor of ~6 for a high mean molecular weight atmosphere (${\mu}$=28). These decreased uncertainties imply that broad spectral coverage between the visible and the mid-infrared is an important tool for understanding the chemistry and composition of exoplanet atmospheres. This analysis suggests that the JWST/NIRSpec 0.6-5 ${\mu}$m prism spectroscopy mode, or similar wavelength coverage with possible future missions, will be an important resource for exoplanet atmospheric characterization.

[1]  C. Griffith,et al.  Disentangling degenerate solutions from primary transit and secondary eclipse spectroscopy of exoplanets , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[3]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[4]  C. F. Lillie,et al.  Characterizing Transiting Planet Atmospheres through 2025 , 2015, 1502.00004.

[5]  J. Livingston,et al.  A CHARACTERISTIC TRANSMISSION SPECTRUM DOMINATED BY H2O APPLIES TO THE MAJORITY OF HST/WFC3 EXOPLANET OBSERVATIONS , 2015, 1512.00151.

[6]  E. Agol,et al.  SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER , 2010, 1011.4066.

[7]  Drake Deming,et al.  A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion , 2016, Nature.

[8]  Nikole K. Lewis,et al.  ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b , 2013, 1302.5084.

[9]  P. McCullough,et al.  PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY , 2010, 1002.2434.

[10]  Joshua N. Winn,et al.  THE TRANSIT LIGHT CURVE PROJECT. XIII. SIXTEEN TRANSITS OF THE SUPER-EARTH GJ 1214b , 2010, 1012.0376.

[11]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[12]  R. J. de Kok,et al.  Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b , 2014, 1404.3769.

[13]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[14]  Roxana Lupu,et al.  FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS , 2016, 1610.07632.

[15]  Cfa,et al.  IMPACT OF ATMOSPHERIC REFRACTION: HOW DEEPLY CAN WE PROBE EXO-EARTH'S ATMOSPHERES DURING PRIMARY ECLIPSE OBSERVATIONS? , 2013, 1312.6625.

[16]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[17]  M. Swain,et al.  An analytical formalism accounting for clouds and other `surfaces' for exoplanet transmission spectroscopy , 2016, 1610.02049.

[18]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[19]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[20]  Nikku Madhusudhan,et al.  NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY , 2016, 1605.08810.

[21]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[22]  Robert T. Zellem,et al.  THE 4.5 μm FULL-ORBIT PHASE CURVE OF THE HOT JUPITER HD 209458b , 2014, 1405.5923.

[23]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[24]  S. Seager,et al.  HOW TO DISTINGUISH BETWEEN CLOUDY MINI-NEPTUNES AND WATER/VOLATILE-DOMINATED SUPER-EARTHS , 2013, 1306.6325.

[25]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[26]  Nikku Madhusudhan,et al.  Atmospheric signatures of giant exoplanet formation by pebble accretion , 2016, 1611.03083.

[27]  Kevin France,et al.  OBSERVATIONS OF MASS LOSS FROM THE TRANSITING EXOPLANET HD 209458b , 2010, 1005.1633.

[28]  Michael R. Line,et al.  Information Content Analysis for Selection of Optimal JWST Observing Modes for Transiting Exoplanet Atmospheres , 2016, 1612.02085.

[29]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[30]  D. Deming,et al.  A NEAR-INFRARED TRANSMISSION SPECTRUM FOR THE WARM SATURN HAT-P-12b , 2013, 1310.4796.

[31]  I. P. Waldmann,et al.  REVISITING SPITZER TRANSIT OBSERVATIONS WITH INDEPENDENT COMPONENT ANALYSIS: NEW RESULTS FOR THE GJ 436 SYSTEM , 2015, 1501.05866.

[32]  Katharina Lodders,et al.  Jupiter Formed with More Tar than Ice , 2004 .

[33]  Robert A. Woodruff,et al.  Wide Field Camera 3 instrument optical design for the Hubble Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[34]  E. Agol,et al.  A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b , 2012, 1202.1883.

[35]  Mark Swain,et al.  ON THE DETECTION OF MOLECULES IN THE ATMOSPHERE OF HD 189733b USING HST NICMOS TRANSMISSION SPECTROSCOPY , 2014, 1401.7601.

[36]  A. Santerne,et al.  Impact of occultations of stellar active regions on transmission spectra: Can occultation of a plage mimic the signature of a blue sky? , 2014, 1407.2066.

[37]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[38]  M. Griffin,et al.  The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) , 2015, Astronomical Telescopes + Instrumentation.

[39]  T. Barman,et al.  COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b , 2013, The Astrophysical journal.

[40]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[41]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[42]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[43]  D. Ehrenreich,et al.  Transit spectrophotometry of the exoplanet HD 189733b - II. New Spitzer observations at 3.6 μm , 2010, 1008.2481.

[44]  M. Line,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. III. DIAGNOSING CHEMICAL DISEQUILIBRIUM IN PLANETARY ATMOSPHERES , 2013, 1309.6679.

[45]  M. Mayor,et al.  An extended upper atmosphere around the extrasolar planet HD209458b , 2003, Nature.

[46]  E. Bergin,et al.  EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS , 2016, 1610.07859.

[47]  L. Puig,et al.  ARIEL: an ESA M4 mission candidate , 2016, Astronomical Telescopes + Instrumentation.

[48]  J. Lunine,et al.  CARBON-RICH PLANET FORMATION IN A SOLAR COMPOSITION DISK , 2014, 1402.5182.

[49]  Ravit Helled,et al.  Measuring Jupiter's water abundance by Juno: the link between interior and formation models , 2014, 1403.2891.

[50]  Nikole K. Lewis,et al.  Warm Spitzer Photometry of XO-4b, HAT-P-6b and HAT-P-8b , 2011, 1111.5858.

[51]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[52]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[53]  U. Munari,et al.  The GAPS programme with HARPS-N at TNG. V. A comprehensive analysis of the XO-2 stellar and planetary systems , 2015, 1501.01424.

[54]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[55]  L. Kaltenegger,et al.  Refraction in planetary atmospheres: improved analytical expressions and comparison with a new ray-tracing algorithm , 2015, 1507.02107.

[56]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[57]  Robert T. Zellem,et al.  XO-2b: A HOT JUPITER WITH A VARIABLE HOST STAR THAT POTENTIALLY AFFECTS ITS MEASURED TRANSIT DEPTH , 2015, 1505.01063.

[58]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[59]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[60]  D. Crisp,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. I. A COMPARISON OF ATMOSPHERIC RETRIEVAL TECHNIQUES , 2013, 1304.5561.

[61]  L. Decin,et al.  New chemical scheme for studying carbon-rich exoplanet atmospheres , 2015, 1502.03567.

[62]  Jonathan Tennyson,et al.  Water vapour in the atmosphere of a transiting extrasolar planet , 2007, Nature.

[63]  Mark Clampin,et al.  INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE , 2013, 1302.1141.

[64]  Robert T. Zellem,et al.  Forecasting the Impact of Stellar Activity on Transiting Exoplanet Spectra , 2017, 1705.04708.

[65]  Y. Alibert,et al.  Gas composition of the main volatile elements in protoplanetary discs and its implication for planet formation , 2015 .

[66]  J. Walsh,et al.  Revised Flux Calibration of the WFC3 G102 and G141 grisms , 2011 .

[67]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[68]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[69]  Antonino Francesco Lanza,et al.  Multiwavelength flux variations induced by stellar magnetic activity: effects on planetary transits , 2012, 1201.3514.

[70]  A. Burrows,et al.  THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER “SUPER-EARTHS” , 2012, 1203.1921.

[71]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[72]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[73]  W. Benz,et al.  From stellar nebula to planetesimals , 2014, 1407.7271.

[74]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[75]  Drake Deming,et al.  AN INFORMATION-THEORETIC APPROACH TO OPTIMIZE JWST OBSERVATIONS AND RETRIEVALS OF TRANSITING EXOPLANET ATMOSPHERES , 2016, 1612.01245.

[76]  J. Beaulieu,et al.  Elemental abundances and minimum mass of heavy elements in the envelope of HD 189733b , 2009, 0909.4977.

[77]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[78]  Nikole K. Lewis,et al.  WARM SPITZER OBSERVATIONS OF THREE HOT EXOPLANETS: XO-4b, HAT-P-6b, AND HAT-P-8b , 2012 .

[79]  Drake Deming,et al.  THE TRANSITING EXOPLANET SURVEY SATELLITE: SIMULATIONS OF PLANET DETECTIONS AND ASTROPHYSICAL FALSE POSITIVES , 2015, 1506.03845.

[80]  Gregory S. Tucker,et al.  Transiting Exoplanet Studies and Community Targets for JWST's Early Release Science Program , 2016, 1602.08389.

[81]  John Elwell,et al.  Development of the Wide-field Infrared Survey Explorer (WISE) mission , 2008, Astronomical Telescopes + Instrumentation.

[82]  Kevin B. Stevenson,et al.  QUANTIFYING AND PREDICTING THE PRESENCE OF CLOUDS IN EXOPLANET ATMOSPHERES , 2016, 1601.03492.