Priors over Recurrent Continuous Time Processes

We introduce the Gamma-Exponential Process (GEP), a prior over a large family of continuous time stochastic processes. A hierarchical version of this prior (HGEP; the Hierarchical GEP) yields a useful model for analyzing complex time series. Models based on HGEPs display many attractive properties: conjugacy, exchangeability and closed-form predictive distribution for the waiting times, and exact Gibbs updates for the time scale parameters. After establishing these properties, we show how posterior inference can be carried efficiently using Particle MCMC methods [1]. This yields a MCMC algorithm that can resample entire sequences atomically while avoiding the complications of introducing slice and stick auxiliary variables of the beam sampler [2]. We applied our model to the problem of estimating the disease progression in multiple sclerosis [3], and to RNA evolutionary modeling [4]. In both domains, we found that our model outperformed the standard rate matrix estimation approach.

[1]  Siegfried Heiler,et al.  A Survey on Nonparametric Time Series Analysis , 1999 .

[2]  Michael I. Jordan,et al.  An HDP-HMM for systems with state persistence , 2008, ICML '08.

[3]  Yee Whye Teh,et al.  The Infinite Factorial Hidden Markov Model , 2008, NIPS.

[4]  Dan Klein,et al.  The Infinite PCFG Using Hierarchical Dirichlet Processes , 2007, EMNLP.

[5]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[6]  Bruce Rannala,et al.  Inferring complex DNA substitution processes on phylogenies using uniformization and data augmentation. , 2006, Systematic biology.

[7]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[8]  Yee Whye Teh,et al.  Spatial Normalized Gamma Processes , 2009, NIPS.

[9]  Mark D. Schroder,et al.  Risk‐Neutral Parameter Shifts and Derivatives Pricing in Discrete Time , 2004 .

[10]  Yee Whye Teh,et al.  Beam sampling for the infinite hidden Markov model , 2008, ICML '08.

[11]  S. MacEachern Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .

[12]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[13]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[14]  Lynn Kuo,et al.  Bayesian nonparametric inference for nonhomogeneous Poisson processes , 2001 .

[15]  Micha Mandel,et al.  Estimating disease progression using panel data. , 2010, Biostatistics.

[16]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[17]  K. Arrow,et al.  The New Palgrave Dictionary of Economics , 2020 .

[18]  A. Hobolth,et al.  Statistical Applications in Genetics and Molecular Biology Statistical Inference in Evolutionary Models of DNA Sequences via the EM Algorithm , 2011 .

[19]  Daniel Dufresne,et al.  G distributions and the beta-gamma algebra , 2010 .

[20]  Jim E. Griffin,et al.  Stick-breaking autoregressive processes , 2011 .

[21]  J. K. Friend,et al.  The Theory of Storage , 1962 .

[22]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[23]  J. Griffin The Ornstein–Uhlenbeck Dirichlet process and other time-varying processes for Bayesian nonparametric inference , 2011 .