Thermodynamic and economic optimization of LNG mixed refrigerant processes

Natural gas liquefaction processes are energy and cost intensive. This paper performs thermodynamic and economic optimization of the mid-scale mixed refrigerant cycles including propane precooled mixed refrigerant (C3MR) and dual mixed refrigerant (DMR) processes. Four different objective functions in this study are selected: total shaft work consumption, total cost investment (TCI), total annualized cost (TAC), and total capital cost of compressors and main cryogenic exchangers (MCHEs). Total cost investment (TCI) is a function of two key variables: shaft work (W) and overall heat transfer coefficient and area (UA) of MCHEs. It is proposed for reducing energy consumption and simultaneously minimizing total capital expenditure (CAPEX) and operating expenditure (OPEX). Total shaft work objective function can result in a 44.5% reduction of shaft work for C3MR and a 48.6% reduction for DMR compared to their baseline values, but infinitely high UA of MCHEs. Optimal results show that total capital cost of compressors and MCHEs is more suitable than other objective functions for the objective of reducing both shaft work and UA. It reduces 14.5% of specific power for C3MR and 26.7% for DMR when achieving the relatively lower UA values than their baseline values. In addition, TCI and TAC can also reduce a certain amount of total shaft work at a finite increased UA.

[1]  Tariq Shukri,et al.  LNG technology selection , 2004 .

[2]  Ali Abbas,et al.  Optimisation of LNG mixed-refrigerant processes considering operation and design objectives , 2012, Comput. Chem. Eng..

[3]  Dong Sung Choi,et al.  Novel design of LNG (liquefied natural gas) reliquefaction process , 2011 .

[4]  A. Aspelund,et al.  An optimization-simulation model for a simple LNG process , 2010, Comput. Chem. Eng..

[5]  Costas D. Maranas,et al.  Optimal synthesis of refrigeration cycles and selection of refrigerants , 1999 .

[6]  Rajab Khalilpour,et al.  Operation optimization of propane precooled mixed refrigerant processes , 2013 .

[7]  A. A. Avidan,et al.  LNG links remote supplies and markets , 1997 .

[8]  Sigurd Skogestad,et al.  Optimal operation of simple refrigeration cycles: Part I: Degrees of freedom and optimality of sub-cooling , 2007, Comput. Chem. Eng..

[9]  Andrew Hoadley,et al.  An exergy analysis of small-scale liquefied natural gas (LNG) liquefaction processes , 2006 .

[10]  Kyu-Yeul Lee,et al.  Determination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction process , 2013, Comput. Chem. Eng..

[11]  Sigurd Skogestad,et al.  Active constraint regions for a natural gas liquefaction process , 2013 .

[12]  Iftekhar A. Karimi,et al.  Operational modeling of multistream heat exchangers with phase changes , 2009 .

[13]  Gade Pandu Rangaiah,et al.  Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes , 2013 .

[14]  Mohd Shariq Khan,et al.  Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints , 2013 .

[15]  Sigurd Skogestad,et al.  OPTIMAL OPERATION OF A SIMPLE LNG PROCESS , 2006 .

[16]  Iftekhar A. Karimi,et al.  Optimizing Compressor Operations in an LNG Plant , 2009 .

[17]  Jian Zhang,et al.  Optimal design and operation of a C3MR refrigeration system for natural gas liquefaction , 2012, Comput. Chem. Eng..

[18]  G. Venkatarathnam Cryogenic mixed refrigerant processes , 2008 .

[19]  Luis Fernando Roca Castillo,et al.  Consensual decision-making model based on game theory for LNG processes , 2012 .

[20]  C. Judson King,et al.  Synthesis of Cascade Refrigeration and Liquefaction Systems , 1974 .

[21]  Dariush Mowla,et al.  Energy optimization for liquefaction process of natural gas in peak shaving plant , 2010 .

[22]  Sigurd Skogestad,et al.  Optimal operation of simple refrigeration cycles: Part II: Selection of controlled variables , 2007, Comput. Chem. Eng..

[23]  M. Shuhaimi,et al.  Technology Review of Natural Gas Liquefaction Processes , 2011 .

[24]  Reinhard Radermacher,et al.  Optimization of propane pre-cooled mixed refrigerant LNG plant , 2011 .

[25]  Sigurd Weidemann Løvseth,et al.  Optimization of a simple LNG process using sequential quadratic programming , 2013, Comput. Chem. Eng..

[26]  Richard Turton,et al.  Analysis, Synthesis and Design of Chemical Processes , 2002 .

[27]  I. Moon,et al.  Current Status and Perspectives of Liquefied Natural Gas (LNG) Plant Design , 2013 .

[28]  Costas D. Maranas,et al.  Synthesis of Mixed Refrigerant Cascade Cycles , 2002 .

[29]  Richard S. H. Mah,et al.  Interactive Synthesis of Cascade Refrigeration Systems , 1980 .

[30]  Sigurd Skogestad,et al.  Single-cycle mixed-fluid LNG process Part I: Optimal design , 2009 .

[31]  Jin-Kuk Kim,et al.  Optimal Design of Mixed Refrigerant Cycles , 2008 .

[32]  Robin Smith,et al.  Optimal Synthesis of Mixed-Refrigerant Systems for Low-Temperature Processes , 2002 .

[33]  Valentin Pleşu,et al.  17th European Symposium on Computer Aided Process Engineering , 2007 .

[34]  Carlos A. Dorao,et al.  On the conceptual design of pre-cooling stage of LNG plants using propane or an ethane/propane mixture , 2013 .

[35]  Iftekhar A. Karimi,et al.  Modeling and simulation of main cryogenic heat exchanger in a base-load liquefied natural gas plant , 2007 .

[36]  Huiqiang Li,et al.  ECONOMIC ANALYSIS OF MIXED-REFRIGERANT CYCLE AND NITROGEN EXPANDER CYCLE IN SMALL SCALE NATURAL GAS LIQUEFIER , 2008 .

[37]  Sanggyu Lee,et al.  Optimization of single mixed refrigerant natural gas liquefaction plant with nonlinear programming , 2012 .

[38]  Sigurd Skogestad,et al.  Single-cycle mixed-fluid LNG process Part II: Optimal operation , 2009 .

[39]  Sigurd Skogestad,et al.  Problems with Specifying ¢Tmin in the Design of Processes with Heat Exchangers , 2008 .

[40]  Bruce A. Finlayson Introduction to Chemical Engineering Computing , 2006 .