A Shorter, Simpler, Stronger Proof of the Meshalkin-Hochberg-Hirsch Bounds on Componentwise Antichains
暂无分享,去创建一个
[1] L. D. Meshalkin. Generalization of Sperner’s Theorem on the Number of Subsets of a Finite Set , 1963 .
[2] Warren M. Hirsch,et al. SPERNER FAMILIES, s‐SYSTEMS, AND A THEOREM OF MESHALKIN † , 1970 .
[3] I. Anderson. Combinatorics of Finite Sets , 1987 .
[4] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[5] Thomas Zaslavsky,et al. A Meshalkin theorem for projective geometries , 2003, J. Comb. Theory, Ser. A.
[6] D. Lubell. A Short Proof of Sperner’s Lemma , 1966 .
[7] E. Sperner. Ein Satz über Untermengen einer endlichen Menge , 1928 .
[8] Koichiro Yamamoto. Logarithmic order of free distributive lattice , 1954 .
[9] John Hawkes,et al. Advances in probability and related topics , 1976 .
[10] D. Kleitman. On a combinatorial conjecture of Erdös , 1966 .
[11] B. Bollobás. On generalized graphs , 1965 .