An efficient indexing for Internet of Things massive data based on cloud‐fog computing

[1]  Xu Han,et al.  An efficient index for massive IOT data in cloud environment , 2012, CIKM '12.

[2]  Hendrik T. Macedo,et al.  Grouping Similar Trajectories for Carpooling Purposes , 2015, 2015 Brazilian Conference on Intelligent Systems (BRACIS).

[3]  Lin Yin,et al.  XQ-Index: A Distributed Spatial Index for Cloud Storage Platforms , 2018, 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics).

[4]  David Novak,et al.  On scalability of the similarity search in the world of peers , 2006, InfoScale '06.

[5]  Wei Xu,et al.  An Efficient Indexing Model for the Fog Layer of Industrial Internet of Things , 2018, IEEE Transactions on Industrial Informatics.

[6]  Mohd Fadzil Hassan,et al.  Architecture for Latency Reduction in Healthcare Internet-of-Things Using Reinforcement Learning and Fuzzy Based Fog Computing , 2018, Advances in Intelligent Systems and Computing.

[7]  Mario Gerla,et al.  Clustering with power control , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[8]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[9]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Murad Khan,et al.  A generic internet of things architecture for controlling electrical energy consumption in smart homes , 2018, Sustainable Cities and Society.

[11]  Z. Meral Özsoyoglu,et al.  Indexing large metric spaces for similarity search queries , 1999, TODS.

[12]  Guru Prasad Bhandari,et al.  An Overview of Cloud and Edge Computing Architecture and Its Current Issues and Challenges , 2019, Research Anthology on Architectures, Frameworks, and Integration Strategies for Distributed and Cloud Computing.

[13]  Laura Ricci,et al.  Aggregation Techniques for the Internet of Things: An Overview , 2018, The Internet of Things for Smart Urban Ecosystems.

[14]  John S. Baras,et al.  Interest, energy and physical-aware coalition formation and resource allocation in smart IoT applications , 2017, 2017 51st Annual Conference on Information Sciences and Systems (CISS).

[15]  Thomas Seidl,et al.  Subspace clustering for indexing high dimensional data: a main memory index based on local reductions and individual multi-representations , 2011, EDBT/ICDT '11.

[16]  Pavel Zezula,et al.  Indexing Metric Spaces with M-Tree , 1997, SEBD.

[17]  Ulf Leser,et al.  BB-Tree: A Main-Memory Index Structure for Multidimensional Range Queries , 2019, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[18]  Khalid Idrissi,et al.  A fast and efficient fuzzy approximation-based indexing for CBIR , 2013, Multimedia Tools and Applications.

[19]  Sateesh Addepalli,et al.  Fog computing and its role in the internet of things , 2012, MCC '12.

[20]  Junfeng Yang,et al.  KD-tree based clustering algorithm for fast face recognition on large-scale data , 2015, Digital Image Processing.

[21]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[22]  Oren Etzioni,et al.  Web document clustering: a feasibility demonstration , 1998, SIGIR '98.

[23]  Shichao Jin,et al.  MX-tree: A Double Hierarchical Metric Index with Overlap Reduction , 2013, ICCSA.

[24]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[25]  Nima Jafari Navimipour,et al.  Data aggregation mechanisms in the Internet of things: A systematic review of the literature and recommendations for future research , 2017, J. Netw. Comput. Appl..

[26]  Rahim Tafazolli,et al.  Large-Scale Indexing, Discovery, and Ranking for the Internet of Things (IoT) , 2018, ACM Comput. Surv..

[27]  Mario Gerla,et al.  Adaptive Clustering for Mobile Wireless Networks , 1997, IEEE J. Sel. Areas Commun..

[28]  Ulf Leser,et al.  BB-Tree: A practical and efficient main-memory index structure for multidimensional workloads , 2019, EDBT.

[29]  Leandros Maglaras,et al.  Security and Privacy in Fog Computing: Challenges , 2017, IEEE Access.

[30]  Rakesh Kumar Jha,et al.  A novel method for parallel indexing of real time geospatial big data generated by IoT devices , 2019, Future Gener. Comput. Syst..

[31]  Rahim Tafazolli,et al.  A Novel Indexing Method for Scalable IoT Source Lookup , 2018, IEEE Internet of Things Journal.

[32]  Jeffrey K. Uhlmann,et al.  Satisfying General Proximity/Similarity Queries with Metric Trees , 1991, Inf. Process. Lett..

[33]  Zineddine Kouahla,et al.  Ascending hierarchical classification for camera clustering based on FoV overlaps for WMSN , 2019, IET Wirel. Sens. Syst..

[34]  Jinhuan Zhang,et al.  An Energy Efficient and Reliable In-Network Data Aggregation Scheme for WSN , 2018, IEEE Access.

[35]  Rajeev Wankar,et al.  Real-World Applications and Research Challenges of Fog/Edge Services , 2018, 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT).

[36]  Marimuthu Palaniswami,et al.  Cluster validity for kernel fuzzy clustering , 2012, 2012 IEEE International Conference on Fuzzy Systems.

[37]  NavimipourNima Jafari,et al.  Data aggregation mechanisms in the Internet of things , 2017 .

[38]  Kim-Kwang Raymond Choo,et al.  Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things , 2019, Future Gener. Comput. Syst..

[39]  Tao Zhang,et al.  Fog and IoT: An Overview of Research Opportunities , 2016, IEEE Internet of Things Journal.

[40]  Xiaofeng Meng,et al.  An efficient multi-dimensional index for cloud data management , 2009, CloudDB@CIKM.

[41]  Tran Cao Son,et al.  Conceptual Modeling and Querying in Multimedia Databases , 1998, Multimedia Tools and Applications.

[42]  Symeon Papavassiliou,et al.  Interest-aware energy collection & resource management in machine to machine communications , 2018, Ad Hoc Networks.