Explicit Runge – Kutta methods for the preservation of invariants
暂无分享,去创建一个
D. Hernández-Abreu | L. Rández | J. I. Montijano | M. Calvo | J. I Montijano | M. Calvo | L. Rández | D. Hernández-Abreu
[1] Antonella Zanna,et al. Preserving algebraic invariants with Runge-Kutta methods , 2000 .
[2] Nilima Nigam,et al. Geometric integration on spheres and some interesting applications , 2003 .
[3] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[4] H. C. Plummer. The Analytical Foundations of Celestial Mechanics , 1942, Nature.
[5] G. J. Cooper. Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .
[6] Marián Slodička,et al. An iterative approximation scheme for the Landau-Lifshitz-Gilbert equation , 2004 .
[7] Johannes Schropp. Conserving first integrals under discretization with variable step size integration procedures , 2000 .
[8] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[9] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[10] Ivan Cimrák,et al. Numerical study of nonlinear ferromagnetic materials , 2003 .
[11] N. Del Buono,et al. Explicit methods based on a class of four stage fourth order Runge-Kutta methods for preserving quadratic laws , 2002 .
[12] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[13] J. Stoer,et al. Introduction to Numerical Analysis , 2002 .
[14] E. Fehlberg. Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control , 1968 .