Maintaining the positive definiteness of the matrices in reduced secant methods for equality constrained optimization

We propose an algorithm for minimizing a functionf on ℝn in the presence ofm equality constraintsc that locally is a reduced secant method. The local method is globalized using a nondifferentiable augmented Lagrangian whose decrease is obtained by both a longitudinal search that decreases mainlyf and a transversal search that decreases mainly ∥c∥. Our main objective is to show that the longitudinal path can be designed to maintain the positive definiteness of the reduced matrices by means of the positivity ofγkTδk, whereγk is the change in the reduced gradient and δk is the reduced longitudinal displacement.

[1]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[2]  P. Wolfe Convergence Conditions for Ascent Methods. II , 1969 .

[3]  G. R. Walsh,et al.  Methods Of Optimization , 1976 .

[4]  Jon W. Tolle,et al.  Exact penalty functions in nonlinear programming , 1973, Math. Program..

[5]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[6]  Shih-Ping Han A globally convergent method for nonlinear programming , 1975 .

[7]  Shmuel S. Oren,et al.  Optimal conditioning of self-scaling variable Metric algorithms , 1976, Math. Program..

[8]  Shih-Ping Han,et al.  Superlinearly convergent variable metric algorithms for general nonlinear programming problems , 1976, Math. Program..

[9]  M. J. D. Powell,et al.  A fast algorithm for nonlinearly constrained optimization calculations , 1978 .

[10]  D. F. Shanno,et al.  Matrix conditioning and nonlinear optimization , 1978, Math. Program..

[11]  M. J. D. Powell,et al.  Algorithms for nonlinear constraints that use lagrangian functions , 1978, Math. Program..

[12]  M. J. D. Powell,et al.  THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .

[13]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .

[14]  Claude Lemaréchal,et al.  A view of line-searches , 1981 .

[15]  Andrew R. Conn,et al.  Nonlinear programming via an exact penalty function: Global analysis , 1982, Math. Program..

[16]  D. Gabay Reduced quasi-Newton methods with feasibility improvement for nonlinearly constrained optimization , 1982 .

[17]  Andrew R. Conn,et al.  Nonlinear programming via an exact penalty function: Asymptotic analysis , 1982, Math. Program..

[18]  D. Mayne,et al.  A surperlinearly convergent algorithm for constrained optimization problems , 1982 .

[19]  D. Leborgne Calcul différentiel et géométrie , 1982 .

[20]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[21]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[22]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[23]  T. Coleman,et al.  On the Local Convergence of a Quasi-Newton Method for the Nonlinear Programming Problem , 1984 .

[24]  Richard H Byrd,et al.  On the convergence of constrained optimization methods with accurate Hessian information on a subspace , 1990 .

[25]  J. Stoer Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs , 1985 .

[26]  Richard H. Byrd,et al.  An example of irregular convergence in some constrained optimization methods that use the projected hessian , 1985, Math. Program..

[27]  Ya-Xiang Yuan,et al.  An only 2-step Q-superlinear convergence example for some algorithms that use reduced hessian approximations , 1985, Math. Program..

[28]  Richard H. Byrd,et al.  Continuity of the null space basis and constrained optimization , 1986, Math. Program..

[29]  W. Hoyer Variants of the reduced Newton method for nonlinear equality constrained optimization problems , 1986 .

[30]  M. J. D. Powell,et al.  on The state of the art in numerical analysis , 1987 .

[31]  Jean Charles Gilbert Mise à jour de la métrique dans les méthodes de quasi-Newton réduites en optimisation avec contraintes d'égalité , 1988 .

[32]  Jean Charles Gilbert,et al.  On the local and global convergence of a reduced Quasi-Newton method1 , 1989 .

[33]  J. F. Bonnans Asymptotic admissibility of the unit stepsize in exact penalty functions , 1989 .