Metadata-Driven Semantic Coordination

Reuse and combination of disparate datasets on the Semantic Web require semantic coordination, i.e. the ability to match heterogeneous semantic models. Systematic evaluations raised the performance of matching systems in terms of compliance and resource consumption. However, it is equally important to be able to identify diverse matching scenarios, covering a range of variations in the datasets such as different modeling languages, heterogeneous lexicalizations, structural differences and to be able to properly handle these scenarios through dedicated techniques and the exploitation of external resources. Furthermore, this should be achieved without requiring manual tinkering of low-level configuration knobs. As of the Semantic Web vision, machines should be able to coordinate and talk to each other to solve problems. To that end, we propose a system that automates most decisions by leveraging explicit metadata regarding the datasets to be matched and potentially useful support datasets. This system uses established metadata vocabularies such as VoID, Dublin Core and the LIME module of OntoLex-Lemon. Consequently, the system can work on real-world cases, leveraging metadata already published alongside self-describing datasets.

[1]  Johannes Keizer,et al.  Towards VocBench 3: Pushing Collaborative Development of Thesauri and Ontologies Further Beyond , 2017, NKOS@TPDL.

[2]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[3]  Philipp Cimiano,et al.  The OntoLex-Lemon Model: Development and Applications , 2017 .

[4]  Ann M. Hirsch,et al.  Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies Required in Mammalian Pathogenesis , 2014, PloS one.

[5]  Tom Heath,et al.  Linked Data: Evolving the Web into a Global Data Space , 2011, Linked Data.

[6]  James A. Hendler,et al.  The Semantic Web: A new form of Web content that is meaningful to computers will unleash a revolution of new possibilities , 2001 .

[7]  Isabel F. Cruz,et al.  Automatic Background Knowledge Selection for Matching Biomedical Ontologies , 2014, PloS one.

[8]  OntologiesGio WiederholdStanford UniversityNovember Interoperation, Mediation, and Ontologies , 1994 .

[9]  Erhard Rahm,et al.  Effective Mapping Composition for Biomedical Ontologies , 2012 .

[10]  Maria Teresa Pazienza,et al.  A Meta-data Driven Platform for Semi-automatic Configuration of Ontology Mediators , 2014, LREC.

[11]  Cosmin Stroe,et al.  Automatic Configuration Selection Using Ontology Matching Task Profiling , 2012, ESWC.

[12]  G Stix,et al.  The mice that warred. , 2001, Scientific American.

[13]  Yi Li,et al.  RiMOM: A Dynamic Multistrategy Ontology Alignment Framework , 2009, IEEE Transactions on Knowledge and Data Engineering.

[14]  Jérôme Euzenat,et al.  Classifications of Ontology Matching Techniques , 2013 .

[15]  Jayant Madhavan,et al.  Web-Scale Data Integration: You can afford to Pay as You Go , 2007, CIDR.

[16]  Heiko Paulheim,et al.  WikiMatch - using Wikipedia for ontology matching , 2012, OM.

[17]  Wendy Hall,et al.  The Semantic Web Revisited , 2006, IEEE Intelligent Systems.

[18]  Maria Teresa Pazienza,et al.  GENOMA: GENeric Ontology Matching Architecture , 2015, AI*IA.

[19]  Christoph Quix,et al.  Automatic selection of background knowledge for ontology matching , 2011, SWIM '11.

[20]  Enrico Motta,et al.  Exploring the Semantic Web as Background Knowledge for Ontology Matching , 2008, J. Data Semant..

[21]  Armando Stellato,et al.  A Language-Aware Web will Give us a Bigger and Better Semantic Web , 2015, MSW@ESWC.

[22]  Christian Chiarcos,et al.  Linked Data in Linguistics , 2012, Springer Berlin Heidelberg.

[23]  Philipp Cimiano,et al.  LIME: The Metadata Module for OntoLex , 2015, ESWC.

[24]  Amit P. Sheth,et al.  Ontology Alignment for Linked Open Data , 2010, SEMWEB.

[25]  Viviana Mascardi,et al.  Automatic Ontology Matching via Upper Ontologies: A Systematic Evaluation , 2010, IEEE Transactions on Knowledge and Data Engineering.

[26]  Francis Bond,et al.  A Survey of WordNets and their Licenses , 2011 .

[27]  Michael Hausenblas,et al.  Describing linked datasets with the VoID vocabulary , 2011 .

[28]  Tim Berners-Lee,et al.  Linked data , 2020, Semantic Web for the Working Ontologist.

[29]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[30]  Ismailcem Budak Arpinar,et al.  Ontology Evaluation and Ranking using OntoQA , 2007, International Conference on Semantic Computing (ICSC 2007).

[31]  David Maier,et al.  Principles of dataspace systems , 2006, PODS '06.

[32]  Jérôme David,et al.  The Alignment API 4.0 , 2011, Semantic Web.

[33]  Malgorzata Mochól,et al.  Towards a Rule-Based Matcher Selection , 2008, EKAW.