Total Colourings - A survey

The smallest integer $k$ needed for the assignment of colors to the elements so that the coloring is proper (vertices and edges) is called the total chromatic number of a graph. Vizing and Behzed conjectured that the total coloring can be done using at most $\Delta(G)+2$ colors, where $\Delta(G)$ is the maximum degree of $G$. It is not settled even for planar graphs. In this paper we give a survey on total coloring of graphs.

[1]  J Hang,et al.  THE TOTAL CHROMATIC NUMBER OF SOME GRAPHS , 1988 .

[2]  Shuji Isobe,et al.  Total Colorings Of Degenerate Graphs , 2007, Comb..

[3]  Alberto Cavicchioli,et al.  Special Classes of Snarks , 2003 .

[4]  Bing Wang,et al.  Total colorings of planar graphs without chordal 6-cycles , 2014, Discret. Appl. Math..

[5]  Jean-Sébastien Sereni,et al.  Total colouring of plane graphs with maximum degree nine , 2007 .

[6]  Torsten Sander,et al.  Some Properties of Unitary Cayley Graphs , 2007, Electron. J. Comb..

[7]  Jianfeng Hou,et al.  On total colorings of 1-planar graphs , 2013, J. Comb. Optim..

[8]  Oleg V. Borodin,et al.  Colorings of plane graphs: A survey , 2013, Discret. Math..

[9]  Panos M. Pardalos,et al.  Minimum total coloring of planar graph , 2014, J. Glob. Optim..

[10]  Celina M. H. de Figueiredo,et al.  Total chromatic number of {square, unichord}-free graphs , 2010, Electron. Notes Discret. Math..

[11]  Bhawani Sankar Panda,et al.  Total-colorings of complete multipartite graphs using amalgamations , 2016, Discret. Math..

[12]  Jianfeng Hou,et al.  Total Colorings of Planar Graphs without Small Cycles , 2008, Graphs Comb..

[13]  Chris D. Godsil,et al.  More odd graph theory , 1980, Discret. Math..

[14]  Tao Wang,et al.  Total coloring of 1-toroidal graphs with maximum degree at least 11 and no adjacent triangles , 2012, J. Comb. Optim..

[15]  Anthony J. W. Hilton,et al.  The total chromatic numbers of joins of sparse graphs , 2003, Australas. J Comb..

[16]  Alexandr V. Kostochka,et al.  The total chromatic number of any multigraph with maximum degree five is at most seven , 1996, Discret. Math..

[17]  Blaz Zmazek,et al.  On total chromatic number of direct product graphs , 2008, CTW.

[18]  Celina M. H. de Figueiredo,et al.  Total-Chromatic Number and Chromatic Index of Dually Chordal Graphs , 1999, Inf. Process. Lett..

[19]  Guiying Yan,et al.  Planar graphs with maximum degree 8 and without intersecting chordal 4-cycles are 9-totally colorable , 2012 .

[20]  C. Smith,et al.  Some Binary Games , 1944, The Mathematical Gazette.

[21]  Zhiwen Wang,et al.  Vertex Distinguishing Equitable Total Chromatic Number of Join Graph , 2007 .

[22]  Weili Wu,et al.  Total coloring of planar graphs without adjacent short cycles , 2017, J. Comb. Optim..

[23]  Yingqian Wang,et al.  Planar graphs with maximum degree 7 and without 5-cycles are 8-totally-colorable , 2010, Discret. Math..

[24]  Yue Zhao,et al.  On total 9-coloring planar graphs of maximum degree seven , 1999, J. Graph Theory.

[25]  Celina M. H. de Figueiredo,et al.  Edge-colouring and total-colouring chordless graphs , 2013, Discret. Math..

[26]  Jian-Liang Wu,et al.  Total Coloring of Planar Graphs Without Some Chordal 6-cycles , 2015 .

[27]  iang,et al.  Total Colorings of Planar Graphs with Small Maximum Degree , 2013 .

[28]  Sandi Klavzar,et al.  Vertex-, edge-, and total-colorings of Sierpinski-like graphs , 2009, Discret. Math..

[29]  Jian Chang,et al.  Total colorings of planar graphs with maximum degree 8 and without 5-cycles with two chords , 2013, Theor. Comput. Sci..

[30]  Jan Mycielski Sur le coloriage des graphs , 1955 .

[31]  Celina M. H. de Figueiredo,et al.  Total chromatic number of unichord-free graphs , 2011, Discret. Appl. Math..

[32]  Limin Zhang,et al.  Total chromatic number of one kind of join graphs , 2006, Discret. Math..

[33]  K. H. Chew Total chromatic number of regular graphs of odd order and high degree , 1996, Discret. Math..

[35]  Hua Cai Total coloring of planar graphs without chordal 7-cycles , 2015 .

[36]  M. Seoud,et al.  Total chromatic numbers , 1992 .

[37]  Xuding Zhu,et al.  Total coloring of planar graphs of maximum degree eight , 2010, Inf. Process. Lett..

[38]  K. Somasundaram,et al.  Total Colorings of Product Graphs , 2018, Graphs Comb..

[39]  Celina M. H. de Figueiredo,et al.  Complexity of colouring problems restricted to unichord-free and { square, unichord }-free graphs , 2013, Discret. Appl. Math..

[40]  Anthony J. W. Hilton,et al.  The total chromatic number of graphs having large maximum degree , 1993, Discret. Math..

[42]  V. A. Bojarshinov Edge and total coloring of interval graphs , 2001, Discret. Appl. Math..

[43]  Gerard J. Chang,et al.  Local condition for planar graphs of maximum degree 7 to be 8-totally colorable , 2011, Discret. Appl. Math..

[44]  C. N. Campos,et al.  The total chromatic number of some bipartite graphs , 2005, Ars Comb..

[45]  Bruce A. Reed,et al.  A Bound on the Total Chromatic Number , 1998, Comb..

[46]  Celina M. H. de Figueiredo,et al.  Author's Personal Copy Theoretical Computer Science Chromatic Index of Graphs with No Cycle with a Unique Chord , 2022 .

[47]  Celina M. H. de Figueiredo,et al.  On the total coloring of generalized Petersen graphs , 2016, Discret. Math..

[48]  C. N. Campos,et al.  A result on the total colouring of powers of cycles , 2004, Discret. Appl. Math..

[49]  Xin Zhang,et al.  List total coloring of pseudo-outerplanar graphs , 2013, Discret. Math..

[50]  Daniel W. Cranston,et al.  An introduction to the discharging method via graph coloring , 2013, Discret. Math..

[51]  Celina M. H. de Figueiredo,et al.  On the equitable total chromatic number of cubic graphs , 2016, Discret. Appl. Math..

[52]  Bin Liu,et al.  Total coloring of planar graphs without 6-cycles , 2011, Discret. Appl. Math..

[53]  Xin Zhang,et al.  List edge and list total coloring of 1-planar graphs , 2012 .

[54]  C. N. Campos,et al.  The total-chromatic number of some families of snarks , 2011, Discret. Math..

[55]  Xiaodong Li Total Coloring of Planar Graphs with Maximum Degree Six , 2012 .

[56]  K. Somasundaram,et al.  Total Coloring Conjecture for Certain Classes of Graphs , 2018, Algorithms.

[57]  H. Yap Total Colourings of Graphs , 1996 .

[58]  A. E. I. Abd el Maqsoud,et al.  Total colourings of Cartesian products , 1997 .

[59]  J. Hattingh THE EDGE-CHROHATIC NUMBER OF A CIRCULANT , 1988 .

[60]  Lidong Wu,et al.  List edge and list total coloring of planar graphs with maximum degree 8 , 2014, Journal of Combinatorial Optimization.

[61]  Hung-Lin Fu,et al.  Total colorings of graphs of order 2n having maximum degree 2n−2 , 1992, Graphs Comb..

[62]  Bing Yao,et al.  Vertex-distinguishing total coloring of graphs , 2008, Ars Comb..

[63]  Jian-Liang Wu,et al.  Total coloring of planar graphs with 7-cycles containing at most two chords , 2014, Theor. Comput. Sci..

[64]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[65]  Guojun Li,et al.  LIST EDGE AND LIST TOTAL COLORINGS OF PLANAR GRAPHS WITHOUT 6-CYCLES WITH CHORD , 2012 .

[66]  Bin Liu,et al.  Total Coloring of Planar Graphs Without Chordal Short Cycles , 2015, Graphs Comb..

[67]  Anthony J. W. Hilton A total-chromatic number analogue of plantholt's theorem , 1990, Discret. Math..

[68]  Olivier Togni,et al.  Total and fractional total colourings of circulant graphs , 2008, Discret. Math..

[69]  Jianfeng Hou,et al.  Total colorings of planar graphs without adjacent triangles , 2009, Discret. Math..

[70]  V. G. Vizing The cartesian product of graphs , 1963 .

[71]  Yingqian Wang,et al.  (Δ+1)-total-colorability of plane graphs of maximum degree Δ≥6 with neither chordal 5-cycle nor chordal 6-cycle , 2011, Inf. Process. Lett..

[72]  Bin Liu,et al.  A note on the minimum total coloring of planar graphs , 2016 .

[73]  Andreas M. Hinz,et al.  Coloring Hanoi and Sierpiński graphs , 2012, Discret. Math..

[74]  Bing Wang,et al.  Total colorings of planar graphs without intersecting 5-cycles , 2012, Discret. Appl. Math..

[75]  Celina M. H. de Figueiredo,et al.  The total chromatic number of split-indifference graphs , 2012, Discret. Math..

[76]  Bing Wang,et al.  Total colorings of planar graphs with maximum degree seven and without intersecting 3-cycles , 2011, Discret. Math..

[77]  Bing Wang,et al.  Total coloring of planar graphs with maximum degree 7 , 2011, Inf. Process. Lett..

[78]  Zhongshi He,et al.  The total chromatic number of regular graphs of even order and high degree , 2005, Discret. Math..

[79]  Enqiang Zhu,et al.  A sufficient condition for planar graphs with maximum degree 6 to be totally 8-colorable , 2017, Discret. Appl. Math..

[80]  Diana Sasaki,et al.  Snarks with total chromatic number 5 , 2015, Discret. Math. Theor. Comput. Sci..

[81]  K. Somasundaram,et al.  Total coloring for generalized Sierpinski graphs , 2015, Australas. J Comb..

[82]  Jian-Liang Wu,et al.  A note on the total coloring of planar graphs without adjacent 4-cycles , 2012, Discret. Math..

[83]  Janez Zerovnik,et al.  Behzad-Vizing conjecture and Cartesian-product graphs , 2002, Appl. Math. Lett..

[84]  Olivier Togni,et al.  Vertex Distinguishing Edge- and Total-Colorings of Cartesian and other Product Graphs , 2012, Ars Comb..

[85]  Hao Li,et al.  Total chromatic number of generalized Mycielski graphs , 2014, Discret. Math..

[86]  Nicolas Rousse Local Condition for Planar Graphs of Maximum Degree 6 to be Total 8-Colorable , 2011 .

[87]  Lei Dong,et al.  Total colorings of equibipartite graphs , 1999, Discret. Math..

[88]  Celina M. H. de Figueiredo,et al.  Complexity separating classes for edge-colouring and total-colouring , 2011, Journal of the Brazilian Computer Society.

[89]  Július Czap,et al.  A note on total colorings of 1-planar graphs , 2013, Inf. Process. Lett..

[90]  Christopher A. Rodger,et al.  The Total Chromatic Number of Complete Multipartite Graphs with Low Deficiency , 2015, Graphs Comb..

[91]  K. Somasundaram,et al.  Total coloring of corona product of two graphs , 2017, Australas. J Comb..

[92]  Martin Charles Golumbic,et al.  Total coloring of rooted path graphs , 2018, Inf. Process. Lett..

[93]  B. Liu,et al.  List total colorings of planar graphs without triangles at small distance , 2011 .

[94]  Guizhen Liu,et al.  Total coloring of pseudo-outerplanar graphs , 2011, ArXiv.

[95]  Yingqian Wang,et al.  On the 7 Total Colorability of Planar Graphs with Maximum Degree 6 and without 4-cycles , 2009, Graphs Comb..

[96]  Amanda G. Chetwynd,et al.  The Total Chromatic Number of Graphs of High Minimum Degree , 1991 .

[97]  Thomas Zaslavsky,et al.  Mock threshold graphs , 2016, Discret. Math..

[98]  Yingqian Wang,et al.  On total chromatic number of planar graphs without 4-cycles , 2007 .

[99]  Dezheng Xie,et al.  The total chromatic number of regular graphs of high degree , 2009 .

[100]  Abddn SANCHEZ-ARROYO,et al.  Determining the total colouring number is np-hard , 1989, Discret. Math..

[101]  Jian-Liang Wu,et al.  Total colorings of planar graphs with sparse triangles , 2014, Theor. Comput. Sci..

[102]  Celina M. H. de Figueiredo,et al.  The hunting of a snark with total chromatic number 5 , 2014, Discret. Appl. Math..